Umkehrfunktion bestimmen - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen
Umkehrfunktion berechnen, Beispiel 7 | A.28.01
Die Umkehrfunktion einer Funktion zu bestimmen, ist vom Prinzip her sehr einfach: Man löst die Funktion nach x auf. Hat man das getan, kann man das bisherige x nun y nennen, das bisherige y nennt man x und ist fertig (=Variablentausch). Hier ein paar gängige Beispiele dazu. Streng genommen kann man nur dann eine Funktion umkehren, wenn die Funktionen ...
Umkehrfunktion berechnen, Beispiel 4 | A.28.01
Die Umkehrfunktion einer Funktion zu bestimmen, ist vom Prinzip her sehr einfach: Man löst die Funktion nach x auf. Hat man das getan, kann man das bisherige x nun y nennen, das bisherige y nennt man x und ist fertig (=Variablentausch). Hier ein paar gängige Beispiele dazu. Streng genommen kann man nur dann eine Funktion umkehren, wenn die Funktionen ...
Definitions- und Wertemenge der Umkehrfunktion bestimmen, Beispiel 7 | A.28.03
Bei einer Funktion und einer Umkehrfunktion sind Definitionsmenge und Wertemenge einfach vertauscht. Die Definitionsmenge der Funktion ist die Wertemenge der Umkehrfunktion und umgekehrt. (Zur Erinnerung: eine Definitionsmenge besteht aus allen x-Werten, die man einsetzen darf, die Wertemenge sind alle y-Werte die bei einer Funktion rauskommen können.)
Definitions- und Wertemenge der Umkehrfunktion bestimmen, Beispiel 4 | A.28.03
Bei einer Funktion und einer Umkehrfunktion sind Definitionsmenge und Wertemenge einfach vertauscht. Die Definitionsmenge der Funktion ist die Wertemenge der Umkehrfunktion und umgekehrt. (Zur Erinnerung: eine Definitionsmenge besteht aus allen x-Werten, die man einsetzen darf, die Wertemenge sind alle y-Werte die bei einer Funktion rauskommen können.)
Umkehrfunktion berechnen, Beispiel 3 | A.28.01
Die Umkehrfunktion einer Funktion zu bestimmen, ist vom Prinzip her sehr einfach: Man löst die Funktion nach x auf. Hat man das getan, kann man das bisherige x nun y nennen, das bisherige y nennt man x und ist fertig (=Variablentausch). Hier ein paar gängige Beispiele dazu. Streng genommen kann man nur dann eine Funktion umkehren, wenn die Funktionen ...
Definitions- und Wertemenge der Umkehrfunktion bestimmen, Beispiel 2 | A.28.03
Bei einer Funktion und einer Umkehrfunktion sind Definitionsmenge und Wertemenge einfach vertauscht. Die Definitionsmenge der Funktion ist die Wertemenge der Umkehrfunktion und umgekehrt. (Zur Erinnerung: eine Definitionsmenge besteht aus allen x-Werten, die man einsetzen darf, die Wertemenge sind alle y-Werte die bei einer Funktion rauskommen können.)
Umkehrfunktion berechnen, Beispiel 1 | A.28.01
Die Umkehrfunktion einer Funktion zu bestimmen, ist vom Prinzip her sehr einfach: Man löst die Funktion nach x auf. Hat man das getan, kann man das bisherige x nun y nennen, das bisherige y nennt man x und ist fertig (=Variablentausch). Hier ein paar gängige Beispiele dazu. Streng genommen kann man nur dann eine Funktion umkehren, wenn die Funktionen ...
Definitions- und Wertemenge der Umkehrfunktion bestimmen | A.28.03
Bei einer Funktion und einer Umkehrfunktion sind Definitionsmenge und Wertemenge einfach vertauscht. Die Definitionsmenge der Funktion ist die Wertemenge der Umkehrfunktion und umgekehrt. (Zur Erinnerung: eine Definitionsmenge besteht aus allen x-Werten, die man einsetzen darf, die Wertemenge sind alle y-Werte die bei einer Funktion rauskommen können.)
Umkehrfunktion berechnen | A.28.01
Die Umkehrfunktion einer Funktion zu bestimmen, ist vom Prinzip her sehr einfach: Man löst die Funktion nach x auf. Hat man das getan, kann man das bisherige x nun y nennen, das bisherige y nennt man x und ist fertig (=Variablentausch). Hier ein paar gängige Beispiele dazu. Streng genommen kann man nur dann eine Funktion umkehren, wenn die Funktionen ...
Umkehrfunktion berechnen, Beispiel 8 | A.28.01
Die Umkehrfunktion einer Funktion zu bestimmen, ist vom Prinzip her sehr einfach: Man löst die Funktion nach x auf. Hat man das getan, kann man das bisherige x nun y nennen, das bisherige y nennt man x und ist fertig (=Variablentausch). Hier ein paar gängige Beispiele dazu. Streng genommen kann man nur dann eine Funktion umkehren, wenn die Funktionen ...
Quelle
Systematik
- Mathematik (21)
- Mathematisch-Naturwissenschaftliche Fächer (21)
- Differentialrechnung (1)
- Zahlen (1)
- Fächerübergreifende Themen (1)
- Fachdidaktik (1)
- Zuordnungen, Funktionen (1)
Schlagwörter
- Analysis (20)
- Umkehrfunktion (19)
- Funktion (Mathematik) (19)
- E-Learning (19)
- Video (19)
- Wertemenge (10)
- Definitionsmenge (10)