Umkehrfunktion berechnen - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen
Umkehrfunktion berechnen, Beispiel 7 | A.28.01
Die Umkehrfunktion einer Funktion zu bestimmen, ist vom Prinzip her sehr einfach: Man löst die Funktion nach x auf. Hat man das getan, kann man das bisherige x nun y nennen, das bisherige y nennt man x und ist fertig (=Variablentausch). Hier ein paar gängige Beispiele dazu. Streng genommen kann man nur dann eine Funktion umkehren, wenn die Funktionen ...
Umkehrfunktion berechnen, Beispiel 4 | A.28.01
Die Umkehrfunktion einer Funktion zu bestimmen, ist vom Prinzip her sehr einfach: Man löst die Funktion nach x auf. Hat man das getan, kann man das bisherige x nun y nennen, das bisherige y nennt man x und ist fertig (=Variablentausch). Hier ein paar gängige Beispiele dazu. Streng genommen kann man nur dann eine Funktion umkehren, wenn die Funktionen ...
Umkehrfunktion berechnen, Beispiel 3 | A.28.01
Die Umkehrfunktion einer Funktion zu bestimmen, ist vom Prinzip her sehr einfach: Man löst die Funktion nach x auf. Hat man das getan, kann man das bisherige x nun y nennen, das bisherige y nennt man x und ist fertig (=Variablentausch). Hier ein paar gängige Beispiele dazu. Streng genommen kann man nur dann eine Funktion umkehren, wenn die Funktionen ...
Umkehrfunktion berechnen, Beispiel 1 | A.28.01
Die Umkehrfunktion einer Funktion zu bestimmen, ist vom Prinzip her sehr einfach: Man löst die Funktion nach x auf. Hat man das getan, kann man das bisherige x nun y nennen, das bisherige y nennt man x und ist fertig (=Variablentausch). Hier ein paar gängige Beispiele dazu. Streng genommen kann man nur dann eine Funktion umkehren, wenn die Funktionen ...
Umkehrfunktion berechnen | A.28.01
Die Umkehrfunktion einer Funktion zu bestimmen, ist vom Prinzip her sehr einfach: Man löst die Funktion nach x auf. Hat man das getan, kann man das bisherige x nun y nennen, das bisherige y nennt man x und ist fertig (=Variablentausch). Hier ein paar gängige Beispiele dazu. Streng genommen kann man nur dann eine Funktion umkehren, wenn die Funktionen ...
Umkehrfunktion berechnen, Beispiel 8 | A.28.01
Die Umkehrfunktion einer Funktion zu bestimmen, ist vom Prinzip her sehr einfach: Man löst die Funktion nach x auf. Hat man das getan, kann man das bisherige x nun y nennen, das bisherige y nennt man x und ist fertig (=Variablentausch). Hier ein paar gängige Beispiele dazu. Streng genommen kann man nur dann eine Funktion umkehren, wenn die Funktionen ...
Umkehrfunktion berechnen, Beispiel 5 | A.28.01
Die Umkehrfunktion einer Funktion zu bestimmen, ist vom Prinzip her sehr einfach: Man löst die Funktion nach x auf. Hat man das getan, kann man das bisherige x nun y nennen, das bisherige y nennt man x und ist fertig (=Variablentausch). Hier ein paar gängige Beispiele dazu. Streng genommen kann man nur dann eine Funktion umkehren, wenn die Funktionen ...
Umkehrfunktion berechnen, Beispiel 2 | A.28.01
Die Umkehrfunktion einer Funktion zu bestimmen, ist vom Prinzip her sehr einfach: Man löst die Funktion nach x auf. Hat man das getan, kann man das bisherige x nun y nennen, das bisherige y nennt man x und ist fertig (=Variablentausch). Hier ein paar gängige Beispiele dazu. Streng genommen kann man nur dann eine Funktion umkehren, wenn die Funktionen ...
Umkehrfunktion berechnen, Beispiel 6 | A.28.01
Die Umkehrfunktion einer Funktion zu bestimmen, ist vom Prinzip her sehr einfach: Man löst die Funktion nach x auf. Hat man das getan, kann man das bisherige x nun y nennen, das bisherige y nennt man x und ist fertig (=Variablentausch). Hier ein paar gängige Beispiele dazu. Streng genommen kann man nur dann eine Funktion umkehren, wenn die Funktionen ...
Analysis: Videos zu Grenzwerten und Umkehrfunktionen
Im diesem Kurs lernen Schülerinnen und Schüler, wie man die Umkehrfunktion zu einem vorgegebenen Funktionsterm rechnerisch bestimmt und wie man den Graph einer Umkehrfunktion zu einem vorgegebenen Funktionsgraphen zeichnet, ohne den Funktionsterm zu kennen.
Quelle
Systematik
- Mathematik (11)
- Mathematisch-Naturwissenschaftliche Fächer (11)
- Analysis, Analytische Geometrie (1)
- Zahlen (1)
- Fächerübergreifende Themen (1)
- Mathematische Anwendungen in Anderen Gebieten (1)
- Fachdidaktik (1)
Schlagwörter
- Analysis (11)
- Umkehrfunktion (10)
- Inversion (9)
- Inverse Funktion (9)
- Funktion (Mathematik) (9)
- E-Learning (9)
- Video (9)