U-Wert - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

U-Wert - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

Bauphysikalische Grundlagen ENEV, U-Wert Berechnung
Der WOLFIN Ratgeber, der als Standardwerk der Flachdachbranche gilt, ist nun in digitaler Form (als pdf-Datei)im Internet zum downloaden vorhanden. Er wurde in 4 Kapitel untergliedert: Hier: Bauphysik ( ENEV, U-Wert Berechnung )
Abhängigkeiten von Enzymen (ph, Temperatur)
Die Beeinflussung der Tertiärstruktur durch pH - Wert- oder Temperaturänderungen erklärt Kollege Helmich u.a. am Beispiel von Pepsin und Trypsin. Dabei geht er auf die chemischen Hintergründe ein.
Abstand Punkt-Funktion berechnen, Beispiel 2 | A.21.07
Der Abstand eines Punkt P zu einer Funktion f(x) ist natürlich der KLEINSTE Abstand von diesem Punkt zur Funktion. Man stellt eine Normale auf die Funktion im unbekannten Punkt P(u|f(u)) auf und macht eine Punktprobe mit dem Punkt P. Man erhält den gewünschten Wert für u, welcher der x-Wert des gesuchten Punktes ist. (Abstand Punkt Funktion gehört nicht zu den häufigsten ...
Abstand Punkt-Funktion berechnen, Beispiel 1 | A.21.07
Der Abstand eines Punkt P zu einer Funktion f(x) ist natürlich der KLEINSTE Abstand von diesem Punkt zur Funktion. Man stellt eine Normale auf die Funktion im unbekannten Punkt P(u|f(u)) auf und macht eine Punktprobe mit dem Punkt P. Man erhält den gewünschten Wert für u, welcher der x-Wert des gesuchten Punktes ist. (Abstand Punkt Funktion gehört nicht zu den häufigsten ...
Abstand Punkt-Funktion berechnen, Beispiel 3 | A.21.07
Der Abstand eines Punkt P zu einer Funktion f(x) ist natürlich der KLEINSTE Abstand von diesem Punkt zur Funktion. Man stellt eine Normale auf die Funktion im unbekannten Punkt P(u|f(u)) auf und macht eine Punktprobe mit dem Punkt P. Man erhält den gewünschten Wert für u, welcher der x-Wert des gesuchten Punktes ist. (Abstand Punkt Funktion gehört nicht zu den häufigsten ...
Abstand Punkt-Funktion berechnen | A.21.07
Der Abstand eines Punkt P zu einer Funktion f(x) ist natürlich der KLEINSTE Abstand von diesem Punkt zur Funktion. Man stellt eine Normale auf die Funktion im unbekannten Punkt P(u|f(u)) auf und macht eine Punktprobe mit dem Punkt P. Man erhält den gewünschten Wert für u, welcher der x-Wert des gesuchten Punktes ist. (Abstand Punkt Funktion gehört nicht zu den häufigsten ...
Tangente außerhalb, Beispiel 6 | A.15.04
Tangente von außen oder Tangente von außerhalb liegt vor, wenn der Berührpunkt der Tangente (oder Normale) NICHT gegeben ist. Dafür kennt man einen anderen Punkt, der auf der Tangente liegt. Vorgehensweise: man verwendet die Tangentenformel, setzt die Koordinaten dieses anderen Punktes für x und y ein und erhält nun eine Gleichung mit nur noch einer einzigen Unbekannten ...
Tangente außerhalb, Beispiel 5 | A.15.04
Tangente von außen oder Tangente von außerhalb liegt vor, wenn der Berührpunkt der Tangente (oder Normale) NICHT gegeben ist. Dafür kennt man einen anderen Punkt, der auf der Tangente liegt. Vorgehensweise: man verwendet die Tangentenformel, setzt die Koordinaten dieses anderen Punktes für x und y ein und erhält nun eine Gleichung mit nur noch einer einzigen Unbekannten ...
Normale außerhalb, Beispiel 1 | A.15.05
Eine „Normale von außen“ oder „Normale von außerhalb“ liegt vor, wenn der Punkt in welchem die (orthogonale) Normale auf der Funktion steht NICHT gegeben ist. Dafür kennt man einen anderen Punkt, der auf der Normale liegt. Vorgehensweise: man verwendet die Normalenformel, setzt die Koordinaten dieses anderen Punktes für x und y ein und erhält nun eine Gleichung mit ...
Normale außerhalb, Beispiel 3 | A.15.05
Eine „Normale von außen“ oder „Normale von außerhalb“ liegt vor, wenn der Punkt in welchem die (orthogonale) Normale auf der Funktion steht NICHT gegeben ist. Dafür kennt man einen anderen Punkt, der auf der Normale liegt. Vorgehensweise: man verwendet die Normalenformel, setzt die Koordinaten dieses anderen Punktes für x und y ein und erhält nun eine Gleichung mit ...