Tangentensteigung - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen
Tangente bestimmen über Tangentensteigung, Beispiel 1 | A.15.01
Eine einfache Möglichkeit, eine Tangente zu bestimmen ist die: Man berechnet zuerst die Tangentensteigung, indem man den x-Wert des Berührpunktes in die Ableitungsfunktion einsetzt. Nun setzt man noch den x-Wert und den y-Wert des Berührpunktes in die Geradengleichung y=m*x+b ein und erhält b. Für die fertige Geradengleichung der Tangente setzt man m und b ...
Tangente bestimmen über Tangentensteigung | A.15.01
Eine einfache Möglichkeit, eine Tangente zu bestimmen ist die: Man berechnet zuerst die Tangentensteigung, indem man den x-Wert des Berührpunktes in die Ableitungsfunktion einsetzt. Nun setzt man noch den x-Wert und den y-Wert des Berührpunktes in die Geradengleichung y=m*x+b ein und erhält b. Für die fertige Geradengleichung der Tangente setzt man m und b ...
Tangente bestimmen über Tangentensteigung, Beispiel 6 | A.15.01
Eine einfache Möglichkeit, eine Tangente zu bestimmen ist die: Man berechnet zuerst die Tangentensteigung, indem man den x-Wert des Berührpunktes in die Ableitungsfunktion einsetzt. Nun setzt man noch den x-Wert und den y-Wert des Berührpunktes in die Geradengleichung y=m*x+b ein und erhält b. Für die fertige Geradengleichung der Tangente setzt man m und b ...
Tangente bestimmen über Tangentensteigung, Beispiel 4 | A.15.01
Eine einfache Möglichkeit, eine Tangente zu bestimmen ist die: Man berechnet zuerst die Tangentensteigung, indem man den x-Wert des Berührpunktes in die Ableitungsfunktion einsetzt. Nun setzt man noch den x-Wert und den y-Wert des Berührpunktes in die Geradengleichung y=m*x+b ein und erhält b. Für die fertige Geradengleichung der Tangente setzt man m und b ...
Tangente bestimmen über Tangentensteigung, Beispiel 5 | A.15.01
Eine einfache Möglichkeit, eine Tangente zu bestimmen ist die: Man berechnet zuerst die Tangentensteigung, indem man den x-Wert des Berührpunktes in die Ableitungsfunktion einsetzt. Nun setzt man noch den x-Wert und den y-Wert des Berührpunktes in die Geradengleichung y=m*x+b ein und erhält b. Für die fertige Geradengleichung der Tangente setzt man m und b ...
Tangente bestimmen über Tangentensteigung, Beispiel 2 | A.15.01
Eine einfache Möglichkeit, eine Tangente zu bestimmen ist die: Man berechnet zuerst die Tangentensteigung, indem man den x-Wert des Berührpunktes in die Ableitungsfunktion einsetzt. Nun setzt man noch den x-Wert und den y-Wert des Berührpunktes in die Geradengleichung y=m*x+b ein und erhält b. Für die fertige Geradengleichung der Tangente setzt man m und b ...
Tangente bestimmen über Tangentensteigung, Beispiel 3 | A.15.01
Eine einfache Möglichkeit, eine Tangente zu bestimmen ist die: Man berechnet zuerst die Tangentensteigung, indem man den x-Wert des Berührpunktes in die Ableitungsfunktion einsetzt. Nun setzt man noch den x-Wert und den y-Wert des Berührpunktes in die Geradengleichung y=m*x+b ein und erhält b. Für die fertige Geradengleichung der Tangente setzt man m und b ...
Steigung berechnen mit der 1. Ableitung der Funktionsgleichung f'(x)=m , Beispiel 2 | A.11.02
Setzt man einen x-Wert in die erste Ableitung f'(x) ein, kann man die Steigung der Funktion berechnen in diesem Punkt. Diese Steigung ist auch die Tangentensteigung bzw. momentane Änderungsrate f'(x)=m. Bei anwendungsorientierten Funktion ist die Steigung oft die Änderung / Zunahme / Abnahme des Bestands.
Steigung berechnen mit der 1. Ableitung der Funktionsgleichung f'(x)=m | A.11.02
Setzt man einen x-Wert in die erste Ableitung f'(x) ein, kann man die Steigung der Funktion berechnen in diesem Punkt. Diese Steigung ist auch die Tangentensteigung bzw. momentane Änderungsrate f'(x)=m. Bei anwendungsorientierten Funktion ist die Steigung oft die Änderung / Zunahme / Abnahme des Bestands.
Steigung berechnen mit der 1. Ableitung der Funktionsgleichung f'(x)=m , Beispiel 4 | A.11.02
Setzt man einen x-Wert in die erste Ableitung f'(x) ein, kann man die Steigung der Funktion berechnen in diesem Punkt. Diese Steigung ist auch die Tangentensteigung bzw. momentane Änderungsrate f'(x)=m. Bei anwendungsorientierten Funktion ist die Steigung oft die Änderung / Zunahme / Abnahme des Bestands.
Quelle
Systematik
- Mathematik (24)
- Mathematisch-Naturwissenschaftliche Fächer (24)
- Fachdidaktik (2)
- Fächerübergreifende Themen (2)
- Zahlen (2)
- Grundschule (2)
Schlagwörter
- Analysis (24)
- Ableitung (22)
- Funktion (Mathematik) (22)
- E-Learning (22)
- Video (22)
- Tangentensteigung (20)
- Steigung (20)