Tangens - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen
Tangens und arctan und wie man richtig damit rechnet; Beispiel 2 | T.01.06
Der Tangens ist eine sogenannte Winkelfunktion und ist an und für sich unanschaulich. Er drückt aber im rechtwinkligen Dreieck das Verhältnis zwischen Gegenkathete und Ankathete aus, so dass man damit eine Beziehung zwischen Winkeln und den Seitenlängen des Dreiecks erhält. Das Verhältnis zwischen Gegenkathete (G) und Ankathete (A) nennt man Arkustangens (im ...
Tangens und arctan und wie man richtig damit rechnet; Beispiel 3 | T.01.06
Der Tangens ist eine sogenannte Winkelfunktion und ist an und für sich unanschaulich. Er drückt aber im rechtwinkligen Dreieck das Verhältnis zwischen Gegenkathete und Ankathete aus, so dass man damit eine Beziehung zwischen Winkeln und den Seitenlängen des Dreiecks erhält. Das Verhältnis zwischen Gegenkathete (G) und Ankathete (A) nennt man Arkustangens (im ...
Tangens und arctan und wie man richtig damit rechnet | T.01.06
Der Tangens ist eine sogenannte Winkelfunktion und ist an und für sich unanschaulich. Er drückt aber im rechtwinkligen Dreieck das Verhältnis zwischen Gegenkathete und Ankathete aus, so dass man damit eine Beziehung zwischen Winkeln und den Seitenlängen des Dreiecks erhält. Das Verhältnis zwischen Gegenkathete (G) und Ankathete (A) nennt man Arkustangens (im ...
Tangens und arctan und wie man richtig damit rechnet; Beispiel 4 | T.01.06
Der Tangens ist eine sogenannte Winkelfunktion und ist an und für sich unanschaulich. Er drückt aber im rechtwinkligen Dreieck das Verhältnis zwischen Gegenkathete und Ankathete aus, so dass man damit eine Beziehung zwischen Winkeln und den Seitenlängen des Dreiecks erhält. Das Verhältnis zwischen Gegenkathete (G) und Ankathete (A) nennt man Arkustangens (im ...
Tangens und arctan und wie man richtig damit rechnet; Beispiel 1 | T.01.06
Der Tangens ist eine sogenannte Winkelfunktion und ist an und für sich unanschaulich. Er drückt aber im rechtwinkligen Dreieck das Verhältnis zwischen Gegenkathete und Ankathete aus, so dass man damit eine Beziehung zwischen Winkeln und den Seitenlängen des Dreiecks erhält. Das Verhältnis zwischen Gegenkathete (G) und Ankathete (A) nennt man Arkustangens (im ...
Winkelberechnung mit den Winkelfunktionen Sinus, Cosinus und Tangens; Beispiel 3 | T.01.01
Ein wichtiger Bestandteil der Trigonometrie ist die Winkelberechnung. Es gibt verschiedenste Zusammenhänge zwischen Winkeln, zwischen Winkeln und den Seitenlängen im Dreieck, Viereck, und (fast) alle wollen wir hier sehen!!! Die Berechnungen funktionieren mit Hilfe der Winkelfunktionen: Sinus, Kosinus und Tangens.
Trigonometrie: was ist das überhaupt? Wie rechnet man damit richtig?
Die Trigonometrie befasst sich mit der Berechnung von Längen und Winkeln in der Ebene (daher heißt die Trigonometrie auch Planimetrie). Üblicherweise erfolgen diese Berechnung mit Hilfe des Satzes von Pythagoras, mit Sinus, Kosinus (teils auch Cosinus), Tangens und anderen trigonometrischen Hilfsmitteln.
Quelle
- Bildungsmediathek NRW (91)
- Lehrer-Online (4)
- Bildungsserver Hessen (4)
- Deutscher Bildungsserver (3)
- Handwerk macht Schule (1)
- Elixier Community (1)
- Select Hessen (1)
Systematik
- Mathematik (105)
- Mathematisch-Naturwissenschaftliche Fächer (104)
- Geometrie (12)
- Grundschule (6)
- Fächerübergreifende Themen (5)
- Fachdidaktik (5)
- Zahlen (5)
Schlagwörter
- Tangens (89)
- Winkelfunktion (76)
- Sinus (68)
- Funktion (Mathematik) (67)
- E-Learning (67)
- Video (67)
- Kosinus (65)
Bildungsebene
Lernressourcentyp
- Arbeitsblatt (4)
- Unterrichtsplanung (3)
- Arbeitsmaterial (3)
- Interaktives Material (2)
- Video/animation (2)
- Simulation (2)
- Lernkontrolle (1)