Symmetrie - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

Symmetrie - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

Film: Wissen macht Ah! – Symmetrie. Wissen macht Ah! – Symmetrie.
Film: Wissen macht Ah! – Symmetrie. Wissen macht Ah! – Symmetrie.
Siemens Materialien: Materialpaket Symmetrie
Siemens Materialien: Materialpaket Symmetrie
Symmetrie
Einzelmedien zum Thema Symmetrie sind hier in didaktisch sinnvoller Weise für das Unterrichten mit einem interaktiven Whiteboard zusammengestellt.
Symmetrie zum Ursprung bzw. Symmetrie zur y-Achse bestimmen, Beispiel 1 | A.17.02
Die einfachste Symmetrie (und die am häufigsten gefragte) ist Symmetrie zum Ursprung oder zur y-Achse. Für Symmetrie zum Ursprung gilt: f(-x)=-f(x). Für Symmetrie zur y-Achse gilt: f(-x)=f(x). Hat man keinen Verdacht, welche Symmetrie die Funktion haben könnte, setzt man in f(x) statt jedem „x“ ein „(-x)“ ein und lässt sich überraschen, was raus ...
Symmetrie zum Ursprung bzw. Symmetrie zur y-Achse bestimmen, Beispiel 3 | A.17.02
Die einfachste Symmetrie (und die am häufigsten gefragte) ist Symmetrie zum Ursprung oder zur y-Achse. Für Symmetrie zum Ursprung gilt: f(-x)=-f(x). Für Symmetrie zur y-Achse gilt: f(-x)=f(x). Hat man keinen Verdacht, welche Symmetrie die Funktion haben könnte, setzt man in f(x) statt jedem „x“ ein „(-x)“ ein und lässt sich überraschen, was raus ...
Symmetrie zum Ursprung bzw. Symmetrie zur y-Achse bestimmen | A.17.02
Die einfachste Symmetrie (und die am häufigsten gefragte) ist Symmetrie zum Ursprung oder zur y-Achse. Für Symmetrie zum Ursprung gilt: f(-x)=-f(x). Für Symmetrie zur y-Achse gilt: f(-x)=f(x). Hat man keinen Verdacht, welche Symmetrie die Funktion haben könnte, setzt man in f(x) statt jedem „x“ ein „(-x)“ ein und lässt sich überraschen, was raus ...
Symmetrie zum Ursprung bzw. Symmetrie zur y-Achse bestimmen, Beispiel 2 | A.17.02
Die einfachste Symmetrie (und die am häufigsten gefragte) ist Symmetrie zum Ursprung oder zur y-Achse. Für Symmetrie zum Ursprung gilt: f(-x)=-f(x). Für Symmetrie zur y-Achse gilt: f(-x)=f(x). Hat man keinen Verdacht, welche Symmetrie die Funktion haben könnte, setzt man in f(x) statt jedem „x“ ein „(-x)“ ein und lässt sich überraschen, was raus ...
Symmetrie (Mathematik)
Symmetrie eines Objektes liegt dann vor, wenn man das Objekt durch eine Kongruenzabbildung wieder auf sich selbst abbilden kann. Die geläufigsten Formen sind Achsensymmetrie und Punktsymmetrie.
Spiegeln - Arbeitsheft
Hier finden Sie zum kostenlosen Download für die Hand der Schülerinnen und Schüler ein Arbeitsheft zum Thema ʺSpiegelnʺ.