Substituieren - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

Substitution von Termen in Gleichungen | A.12.06
Substituieren heißt ersetzen. Substitution wendet man an, wenn man zwei Terme sowie eine Zahl hat, wobei die Hochzahl des einen Terms doppelt so hoch wie die Hochzahl des anderen Terms ist. Nun substituiert (ersetzt) man einen Term durch „u“, den anderen durch „u²“ und erhält eine Mitternachtsformel, aus welcher man u1 und u2 berechnet. Danach muss man resubstituieren, ...
Nullstellen von ganzrationalen Funktionen berechnen über Polynomdivision, Beispiel 2 | A.46.01
Wenn man bei der Berechnung einer Nullstelle kein normales Verfahren anwenden kann (nicht Ausklammern, nicht Substituieren, nicht Mitternachtsformel anwenden kann), bleibt nur die Polynomdivision als Notlösung übrig (oder das Horner-Schema, welches eine andere Variante der Polynomdivision ist). Dafür muss man zuerst eine Nullstelle der Gleichung raten und anschließend die ...
Nullstellen von ganzrationalen Funktionen berechnen über Polynomdivision, Beispiel 1 | A.46.01
Wenn man bei der Berechnung einer Nullstelle kein normales Verfahren anwenden kann (nicht Ausklammern, nicht Substituieren, nicht Mitternachtsformel anwenden kann), bleibt nur die Polynomdivision als Notlösung übrig (oder das Horner-Schema, welches eine andere Variante der Polynomdivision ist). Dafür muss man zuerst eine Nullstelle der Gleichung raten und anschließend die ...
Nullstellen von ganzrationalen Funktionen berechnen über Polynomdivision, Beispiel 3 | A.46.01
Wenn man bei der Berechnung einer Nullstelle kein normales Verfahren anwenden kann (nicht Ausklammern, nicht Substituieren, nicht Mitternachtsformel anwenden kann), bleibt nur die Polynomdivision als Notlösung übrig (oder das Horner-Schema, welches eine andere Variante der Polynomdivision ist). Dafür muss man zuerst eine Nullstelle der Gleichung raten und anschließend die ...
Nullstellen von ganzrationalen Funktionen berechnen über Polynomdivision | A.46.01
Wenn man bei der Berechnung einer Nullstelle kein normales Verfahren anwenden kann (nicht Ausklammern, nicht Substituieren, nicht Mitternachtsformel anwenden kann), bleibt nur die Polynomdivision als Notlösung übrig (oder das Horner-Schema, welches eine andere Variante der Polynomdivision ist). Dafür muss man zuerst eine Nullstelle der Gleichung raten und anschließend die ...
Nullstellen von komplizierten Exponentialfunktionen berechnen, Beispiel 1 | A.41.02
Bei nicht so ganz einfachen Exponentialgleichungen kann man eigentlich nur ausklammern (den Satz vom Nullprodukt anwenden) oder substituieren. Eventuell muss man auch zuerst mit dem Nenner multiplizieren und erst dann Substitution anwenden,
Nullstellen von komplizierten Exponentialfunktionen berechnen, Beispiel 5 | A.41.02
Bei nicht so ganz einfachen Exponentialgleichungen kann man eigentlich nur ausklammern (den Satz vom Nullprodukt anwenden) oder substituieren. Eventuell muss man auch zuerst mit dem Nenner multiplizieren und erst dann Substitution anwenden,
Nullstellen von komplizierten Exponentialfunktionen berechnen | A.41.02
Bei nicht so ganz einfachen Exponentialgleichungen kann man eigentlich nur ausklammern (den Satz vom Nullprodukt anwenden) oder substituieren. Eventuell muss man auch zuerst mit dem Nenner multiplizieren und erst dann Substitution anwenden,
Nullstellen von komplizierten Exponentialfunktionen berechnen, Beispiel 6 | A.41.02
Bei nicht so ganz einfachen Exponentialgleichungen kann man eigentlich nur ausklammern (den Satz vom Nullprodukt anwenden) oder substituieren. Eventuell muss man auch zuerst mit dem Nenner multiplizieren und erst dann Substitution anwenden,
Nullstellen von komplizierten Exponentialfunktionen berechnen, Beispiel 2 | A.41.02
Bei nicht so ganz einfachen Exponentialgleichungen kann man eigentlich nur ausklammern (den Satz vom Nullprodukt anwenden) oder substituieren. Eventuell muss man auch zuerst mit dem Nenner multiplizieren und erst dann Substitution anwenden,