Streckung und Verschiebung - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen
Trigonometrische Funktionen: Erklärung der Grundfunktion f(x)=a·sin(b(xc))+d | A.42.08
Durch Strecken und Verschieben von sin(x) und cos(x) kommt man auf die Grundfunktion der Form f(x)=a·sin(b(xc))+d bzw. f(x)=a·cos(b(xc))+d. Vermutlich sollten Sie wissen, welche Bedeutung die Parameter a, b, c, d haben. a = Amplitude = Streckung in y-Richtung, b=2*Pi/Periode=Stauchung in x-Richtung; c=Verschiebung in x-Richtung (bei sin: c=x-Wert des Wendepunkts mit ...
Trigonometrische Funktionen: Erklärung der Grundfunktion f(x)=a·sin(b(xc))+d, Beispiel 2 | A.42.08
Durch Strecken und Verschieben von sin(x) und cos(x) kommt man auf die Grundfunktion der Form f(x)=a·sin(b(xc))+d bzw. f(x)=a·cos(b(xc))+d. Vermutlich sollten Sie wissen, welche Bedeutung die Parameter a, b, c, d haben. a = Amplitude = Streckung in y-Richtung, b=2*Pi/Periode=Stauchung in x-Richtung; c=Verschiebung in x-Richtung (bei sin: c=x-Wert des Wendepunkts mit ...
Trigonometrische Funktionen: Erklärung der Grundfunktion f(x)=a·sin(b(xc))+d, Beispiel 1 | A.42.08
Durch Strecken und Verschieben von sin(x) und cos(x) kommt man auf die Grundfunktion der Form f(x)=a·sin(b(xc))+d bzw. f(x)=a·cos(b(xc))+d. Vermutlich sollten Sie wissen, welche Bedeutung die Parameter a, b, c, d haben. a = Amplitude = Streckung in y-Richtung, b=2*Pi/Periode=Stauchung in x-Richtung; c=Verschiebung in x-Richtung (bei sin: c=x-Wert des Wendepunkts mit ...
Affine Abbildung; Eigenvektor, Beispiel 2 | M.09.02
Lineare Abbildungen von Matrizen der Form y=M*x+v wandeln einen Vektor x in einen anderen Vektor y um. M ist eine Matrix, v ist ein Verschiebungsvektor. Insgesamt kann durch die Abbildung y=M*x+v so ziemlich jede Drehung, Verschiebung, Streckung, etc.. beschrieben werden. In diesem Kapitel lüften wir das spannende Geheimnis, wie man M und v ...
Analysis 3 | tiefere Einblicke in die Analysis
Im Hauptkapitel 2 Analysis Tiefere Einblicke behandeln wir Themen, die zwar nicht direkt zur Funktionsanalyse gehören, jedoch völlig regelmäßig als Fragen in Prüfungen und Klausuren mit auftauchen. (Diverse Extremwertaufgaben, zwei Funktionen, die sich berühren oder orthogonal aufeinander stehen, stetig oder differenzierbar sind und viel, viel ...
Affine Abbildung; Eigenvektor, Beispiel 6 | M.09.02
Lineare Abbildungen von Matrizen der Form y=M*x+v wandeln einen Vektor x in einen anderen Vektor y um. M ist eine Matrix, v ist ein Verschiebungsvektor. Insgesamt kann durch die Abbildung y=M*x+v so ziemlich jede Drehung, Verschiebung, Streckung, etc.. beschrieben werden. In diesem Kapitel lüften wir das spannende Geheimnis, wie man M und v ...
Quelle
- Bildungsmediathek NRW (12)
- Lehrer-Online (1)
- Deutscher Bildungsserver (1)
- Bildungsserver Hessen (1)
- Select Hessen (1)
Systematik
- Mathematik (16)
- Mathematisch-Naturwissenschaftliche Fächer (16)
- Winkel, Verschiebung, Spiegelung, Drehung (2)
- Euklidische Geometrie der Ebene (2)
- Drehung (1)
- Quadratische Funktionen (1)
- Fachdidaktik (1)
Schlagwörter
- Affine Transformation (7)
- Affine Abbildung (7)
- Affine Abbildungen (7)
- Streckung (6)
- Analysis (6)
- Verschiebung (5)
- Funktion (Mathematik) (5)