Streckung und Verschiebung - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

Streckung und Verschiebung - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

Zentrische Streckung - Lernpfad
Lernpfad für Mathematik zum Thema ´Zentrische Streckung´.
Abbildungsgleichung der Drehung
Auf dieser Seite von serlo.org wird die Abbildungsgleichung der Drehung um den Ursprung erklärt und anhand eines Beispiels eingeübt.
Trigonometrische Funktionen: Erklärung der Grundfunktion f(x)=a·sin(b(x–c))+d | A.42.08
Durch Strecken und Verschieben von sin(x) und cos(x) kommt man auf die Grundfunktion der Form f(x)=a·sin(b(x–c))+d bzw. f(x)=a·cos(b(x–c))+d. Vermutlich sollten Sie wissen, welche Bedeutung die Parameter a, b, c, d haben. a = Amplitude = Streckung in y-Richtung, b=2*Pi/Periode=Stauchung in x-Richtung; c=Verschiebung in x-Richtung (bei sin: c=x-Wert des Wendepunkts mit ...
Analysis: Videos zu Steckbriefaufgaben
Dieser Videokurs für den Mathematik-Unterricht der Oberstufe zeigt, wie anhand der Eigenschaften eines Funktionsgraphen auf den zugehörigen Funktionsterm geschlossen werden kann.
Funktion verschieben, Funktion strecken, Funktion spiegeln | A.23
Man kann Funktionen strecken (mit einem bestimmten Streckfaktor), Funktionen spiegeln und Funktionen verschieben. Es gibt für jedes je eine mathematische Vorgehensweise, welche sich zu merken lohnt.
Trigonometrische Funktionen: Erklärung der Grundfunktion f(x)=a·sin(b(x–c))+d, Beispiel 2 | A.42.08
Durch Strecken und Verschieben von sin(x) und cos(x) kommt man auf die Grundfunktion der Form f(x)=a·sin(b(x–c))+d bzw. f(x)=a·cos(b(x–c))+d. Vermutlich sollten Sie wissen, welche Bedeutung die Parameter a, b, c, d haben. a = Amplitude = Streckung in y-Richtung, b=2*Pi/Periode=Stauchung in x-Richtung; c=Verschiebung in x-Richtung (bei sin: c=x-Wert des Wendepunkts mit ...
Trigonometrische Funktionen: Erklärung der Grundfunktion f(x)=a·sin(b(x–c))+d, Beispiel 1 | A.42.08
Durch Strecken und Verschieben von sin(x) und cos(x) kommt man auf die Grundfunktion der Form f(x)=a·sin(b(x–c))+d bzw. f(x)=a·cos(b(x–c))+d. Vermutlich sollten Sie wissen, welche Bedeutung die Parameter a, b, c, d haben. a = Amplitude = Streckung in y-Richtung, b=2*Pi/Periode=Stauchung in x-Richtung; c=Verschiebung in x-Richtung (bei sin: c=x-Wert des Wendepunkts mit ...
Affine Abbildung; Eigenvektor, Beispiel 2 | M.09.02
Lineare Abbildungen von Matrizen der Form y=M*x+v wandeln einen Vektor „x“ in einen anderen Vektor „y“ um. „M“ ist eine Matrix, „v“ ist ein Verschiebungsvektor. Insgesamt kann durch die Abbildung „y=M*x+v“ so ziemlich jede Drehung, Verschiebung, Streckung, etc.. beschrieben werden. In diesem Kapitel lüften wir das spannende Geheimnis, wie man „M“ und „v“ ...
Analysis 3 | tiefere Einblicke in die Analysis
Im Hauptkapitel „2 Analysis – Tiefere Einblicke“ behandeln wir Themen, die zwar nicht direkt zur Funktionsanalyse gehören, jedoch völlig regelmäßig als Fragen in Prüfungen und Klausuren mit auftauchen. (Diverse Extremwertaufgaben, zwei Funktionen, die sich berühren oder orthogonal aufeinander stehen, stetig oder differenzierbar sind und viel, viel ...
Affine Abbildung; Eigenvektor, Beispiel 6 | M.09.02
Lineare Abbildungen von Matrizen der Form y=M*x+v wandeln einen Vektor „x“ in einen anderen Vektor „y“ um. „M“ ist eine Matrix, „v“ ist ein Verschiebungsvektor. Insgesamt kann durch die Abbildung „y=M*x+v“ so ziemlich jede Drehung, Verschiebung, Streckung, etc.. beschrieben werden. In diesem Kapitel lüften wir das spannende Geheimnis, wie man „M“ und „v“ ...