Streckenlänge - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen
Entfernung berechnen | A.01.04
Entfernungen von zwei Punkten bestimmt man entweder über die Entfernungsformel berechnen: Abstand = Wurzel aus ((x2x1)^2+(y2y1 )^2) oder man zeichnet ein Steigungsdreieck ein und kann dann über Pythagoras die gewünschte Streckenlänge berechnen. Liegen die beiden Punkte nebeneinander oder übereinander, kann man Entfernung der beiden Punkte auch ...
Entfernung berechnen, Beispiel 7 | A.01.04
Entfernungen von zwei Punkten bestimmt man entweder über die Entfernungsformel berechnen: Abstand = Wurzel aus ((x2x1)^2+(y2y1 )^2) oder man zeichnet ein Steigungsdreieck ein und kann dann über Pythagoras die gewünschte Streckenlänge berechnen. Liegen die beiden Punkte nebeneinander oder übereinander, kann man Entfernung der beiden Punkte auch ...
Entfernung berechnen, Beispiel 5 | A.01.04
Entfernungen von zwei Punkten bestimmt man entweder über die Entfernungsformel: Abstand = Wurzel aus ((x2x1)^2+(y2y1 )^2) oder man zeichnet ein Steigungsdreieck ein und kann dann über Pythagoras die gewünschte Streckenlänge berechnen. Liegen die beiden Punkte nebeneinander oder übereinander, kann man die Entfernung der beiden Punkte auch auslesen.
Entfernung berechnen, Beispiel 3 | A.01.04
Entfernungen von zwei Punkten bestimmt man entweder über die Entfernungsformel berechnen: Abstand = Wurzel aus ((x2x1)^2+(y2y1 )^2) oder man zeichnet ein Steigungsdreieck ein und kann dann über Pythagoras die gewünschte Streckenlänge berechnen. Liegen die beiden Punkte nebeneinander oder übereinander, kann man Entfernung der beiden Punkte auch ...
Entfernung berechnen, Beispiel 2 | A.01.04
Entfernungen von zwei Punkten bestimmt man entweder über die Entfernungsformel berechnen: Abstand = Wurzel aus ((x2x1)^2+(y2y1 )^2) oder man zeichnet ein Steigungsdreieck ein und kann dann über Pythagoras die gewünschte Streckenlänge berechnen. Liegen die beiden Punkte nebeneinander oder übereinander, kann man Entfernung der beiden Punkte auch ...
Entfernung berechnen, Beispiel 1 | A.01.04
Entfernungen von zwei Punkten bestimmt man entweder über die Entfernungsformel berechnen: Abstand = Wurzel aus ((x2x1)^2+(y2y1 )^2) oder man zeichnet ein Steigungsdreieck ein und kann dann über Pythagoras die gewünschte Streckenlänge berechnen. Liegen die beiden Punkte nebeneinander oder übereinander, kann man Entfernung der beiden Punkte auch ...
Entfernung berechnen, Beispiel 4 | A.01.04
Entfernungen von zwei Punkten bestimmt man entweder über die Entfernungsformel berechnen: Abstand = Wurzel aus ((x2x1)^2+(y2y1 )^2) oder man zeichnet ein Steigungsdreieck ein und kann dann über Pythagoras die gewünschte Streckenlänge berechnen. Liegen die beiden Punkte nebeneinander oder übereinander, kann man Entfernung der beiden Punkte auch ...
Entfernung berechnen, Beispiel 6 | A.01.04
Entfernungen von zwei Punkten bestimmt man entweder über die Entfernungsformel: Abstand = Wurzel aus ((x2x1)^2+(y2y1 )^2) oder man zeichnet ein Steigungsdreieck ein und kann dann über Pythagoras die gewünschte Streckenlänge berechnen. Liegen die beiden Punkte nebeneinander oder übereinander, kann man die Entfernung der beiden Punkte auch auslesen.
Flächen- und Winkelberechnungen
In dieser Unterrichtseinheit lernen die Schülerinnen und Schüler den Satz des Pythagoras kennen und wenden ihn in Bezug auf alltägliche Sachprobleme an. Der Dreisatz sowie das Umrechnen von Maßeinheiten werden wiederholt und bei der Bearbeitung von Textaufgaben angewandt.
Quelle
Systematik
- Mathematik (9)
- Mathematisch-Naturwissenschaftliche Fächer (9)
- Fachdidaktik (1)
- Fächerübergreifende Themen (1)
- Zahlen (1)
- Grundschule (1)
Schlagwörter
- Streckenlänge (9)
- Entfernungen (8)
- Abstand (8)
- Entfernung (8)
- Koordinatensystem (7)
- Koordinate (7)
- Gerade (Mathematik) (7)