Stetigkeit - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen
Stetigkeit von Funktionen
Mit über 150 Artikeln und über 100 interaktiven Übungen gehört MatheGuru.com zu den umfangreichsten Mathematikseiten im deutschsprachigen Internet. Zahlreiche farbige Abbildungen visualisieren die einzelnen Sachverhalte und helfen beim Verständnis. Hier geht es um Stetigkeit als Eigenschaft von Funktionen.
Stetigkeit und Differenzierbarkeit von Funktionen | A.25
Stetigkeit einer Funktion liegt vor, wenn die Funktion NICHT springt, also kontinuierlich verläuft, wenn man sie also zeichnen kann, ohne den Stift abzusetzen. Eine Funktion ist differenzierbar, wenn sie KEINEN Knick aufweist, wenn sie also überall glatt verläuft. Man kann auch sagen, eine Funktion ist differenzierbar wenn die Funktion UND die ersten Ableitung stetig sind. ...
Analysis 1: Stetigkeit
Skripte und Übungsaufgaben zur Analysis 1 Vorbereitende Übungsaufgaben Kapitel 3 - Stetigkeit Gliederung: 1. Definitionen und Sätze 2. Unstetigkeitsstellen gebrochenrationaler Funktionen 3. Verallgemeinerung des Asymptotenbegriffs. Das Übungsblatt 3 wurde mithilfe von SMART - einer interaktiven Aufgabensammlung ...
Stetigkeit und Differenzierbarkeit der verschiedenen Funktionstypen | A.25.01
Je nachdem zu welchem Funktionstyp eine Funktion gehört, kann man schon Vermutungen über ihre Stetigkeit und Differenzierbarkeit anstellen. Polynome und Exponentialfunktionen sind im Normalfall immer stetig und differenzierbar. Hat eine Funktion einen Bruch, so gibts im Normalfall an der Stelle eine Definitionslücke (bzw. senkrechte Asymptote bzw. Polstelle bzw. ...
Definition von stetig und differenzierbar | A.25.0.3
Knickfrei ist ein Schlüsselwort, welches man für Prüfungsaufgaben kennen sollte. Es geht meist im zwei Funktionen, die bei einem bestimmten x-Wert zusammentreffen. Der Übergang beider Funktionen verläuft knickfrei, wenn (bei diesem x-Wert) die y-Werte gleich sind, die Ergebnisse der ersten Ableitungen und die der zweiten Ableitungen. In der Mathematik hat das Wort ...
Definition von stetig und differenzierbar, Beispiel 2 | A.25.0.3
Knickfrei ist ein Schlüsselwort, welches man für Prüfungsaufgaben kennen sollte. Es geht meist im zwei Funktionen, die bei einem bestimmten x-Wert zusammentreffen. Der Übergang beider Funktionen verläuft knickfrei, wenn (bei diesem x-Wert) die y-Werte gleich sind, die Ergebnisse der ersten Ableitungen und die der zweiten Ableitungen. In der Mathematik hat das Wort ...
Definition von stetig und differenzierbar, Beispiel 4 | A.25.0.3
Knickfrei ist ein Schlüsselwort, welches man für Prüfungsaufgaben kennen sollte. Es geht meist im zwei Funktionen, die bei einem bestimmten x-Wert zusammentreffen. Der Übergang beider Funktionen verläuft knickfrei, wenn (bei diesem x-Wert) die y-Werte gleich sind, die Ergebnisse der ersten Ableitungen und die der zweiten Ableitungen. In der Mathematik hat das Wort ...
Definition von stetig und differenzierbar, Beispiel 3 | A.25.0.3
Knickfrei ist ein Schlüsselwort, welches man für Prüfungsaufgaben kennen sollte. Es geht meist im zwei Funktionen, die bei einem bestimmten x-Wert zusammentreffen. Der Übergang beider Funktionen verläuft knickfrei, wenn (bei diesem x-Wert) die y-Werte gleich sind, die Ergebnisse der ersten Ableitungen und die der zweiten Ableitungen. In der Mathematik hat das Wort ...
Definition von stetig und differenzierbar, Beispiel 1 | A.25.0.3
Knickfrei ist ein Schlüsselwort, welches man für Prüfungsaufgaben kennen sollte. Es geht meist im zwei Funktionen, die bei einem bestimmten x-Wert zusammentreffen. Der Übergang beider Funktionen verläuft knickfrei, wenn (bei diesem x-Wert) die y-Werte gleich sind, die Ergebnisse der ersten Ableitungen und die der zweiten Ableitungen. In der Mathematik hat das Wort ...
Quelle
- Bildungsmediathek NRW (9)
- Serlo (1)
- Sächsischer Bildungsserver (1)
- Deutscher Bildungsserver (1)
- Select Hessen (1)
Systematik
- Mathematik (12)
- Mathematisch-Naturwissenschaftliche Fächer (12)
- Zuordnungen, Funktionen (2)
- Ableitungen (1)
- Analysis (1)
Schlagwörter
- Analysis (9)
- Differenzierbarkeit (8)
- Stetigkeit (8)
- Ableitung (8)
- Funktion (Mathematik) (8)
- E-Learning (8)
- Video (8)