Stetigkeit - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

Stetigkeit von Funktionen
Mit über 150 Artikeln und über 100 interaktiven Übungen gehört MatheGuru.com zu den umfangreichsten Mathematikseiten im deutschsprachigen Internet. Zahlreiche farbige Abbildungen visualisieren die einzelnen Sachverhalte und helfen beim Verständnis. Hier geht es um Stetigkeit als Eigenschaft von Funktionen.
Stetigkeit und Differenzierbarkeit von Funktionen | A.25
Stetigkeit einer Funktion liegt vor, wenn die Funktion NICHT springt, also kontinuierlich verläuft, wenn man sie also zeichnen kann, ohne den Stift abzusetzen. Eine Funktion ist differenzierbar, wenn sie KEINEN Knick aufweist, wenn sie also überall glatt verläuft. Man kann auch sagen, eine Funktion ist differenzierbar wenn die Funktion UND die ersten Ableitung stetig sind. ...
Analysis 1: Stetigkeit
Skripte und Übungsaufgaben zur Analysis 1 Vorbereitende Übungsaufgaben Kapitel 3 - Stetigkeit   Gliederung: 1. Definitionen und Sätze 2. Unstetigkeitsstellen gebrochenrationaler Funktionen 3. Verallgemeinerung des Asymptotenbegriffs.    Das Übungsblatt 3 wurde mithilfe von SMART - einer interaktiven Aufgabensammlung ...
Stetigkeit (Mathematik)
Eine Funktion f heißt genau dann stetig an einer Stelle x_0, wenn der Funktionswert an dieser Stelle mit sowohl links- als auch rechtsseitigem Grenzwert identisch ist.
Stetigkeit und Differenzierbarkeit der verschiedenen Funktionstypen | A.25.01
Je nachdem zu welchem Funktionstyp eine Funktion gehört, kann man schon Vermutungen über ihre Stetigkeit und Differenzierbarkeit anstellen. Polynome und Exponentialfunktionen sind im Normalfall immer stetig und differenzierbar. Hat eine Funktion einen Bruch, so gibt’s im Normalfall an der Stelle eine Definitionslücke (bzw. senkrechte Asymptote bzw. Polstelle bzw. ...
Definition von stetig und differenzierbar | A.25.0.3
„Knickfrei“ ist ein Schlüsselwort, welches man für Prüfungsaufgaben kennen sollte. Es geht meist im zwei Funktionen, die bei einem bestimmten x-Wert zusammentreffen. Der Übergang beider Funktionen verläuft knickfrei, wenn (bei diesem x-Wert) die y-Werte gleich sind, die Ergebnisse der ersten Ableitungen und die der zweiten Ableitungen. In der Mathematik hat das Wort ...
Definition von stetig und differenzierbar, Beispiel 2 | A.25.0.3
„Knickfrei“ ist ein Schlüsselwort, welches man für Prüfungsaufgaben kennen sollte. Es geht meist im zwei Funktionen, die bei einem bestimmten x-Wert zusammentreffen. Der Übergang beider Funktionen verläuft knickfrei, wenn (bei diesem x-Wert) die y-Werte gleich sind, die Ergebnisse der ersten Ableitungen und die der zweiten Ableitungen. In der Mathematik hat das Wort ...
Definition von stetig und differenzierbar, Beispiel 4 | A.25.0.3
„Knickfrei“ ist ein Schlüsselwort, welches man für Prüfungsaufgaben kennen sollte. Es geht meist im zwei Funktionen, die bei einem bestimmten x-Wert zusammentreffen. Der Übergang beider Funktionen verläuft knickfrei, wenn (bei diesem x-Wert) die y-Werte gleich sind, die Ergebnisse der ersten Ableitungen und die der zweiten Ableitungen. In der Mathematik hat das Wort ...
Definition von stetig und differenzierbar, Beispiel 3 | A.25.0.3
„Knickfrei“ ist ein Schlüsselwort, welches man für Prüfungsaufgaben kennen sollte. Es geht meist im zwei Funktionen, die bei einem bestimmten x-Wert zusammentreffen. Der Übergang beider Funktionen verläuft knickfrei, wenn (bei diesem x-Wert) die y-Werte gleich sind, die Ergebnisse der ersten Ableitungen und die der zweiten Ableitungen. In der Mathematik hat das Wort ...
Definition von stetig und differenzierbar, Beispiel 1 | A.25.0.3
„Knickfrei“ ist ein Schlüsselwort, welches man für Prüfungsaufgaben kennen sollte. Es geht meist im zwei Funktionen, die bei einem bestimmten x-Wert zusammentreffen. Der Übergang beider Funktionen verläuft knickfrei, wenn (bei diesem x-Wert) die y-Werte gleich sind, die Ergebnisse der ersten Ableitungen und die der zweiten Ableitungen. In der Mathematik hat das Wort ...