Steigung und Ableitung - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen
Steigung berechnen mit der 1. Ableitung der Funktionsgleichung f'(x)=m , Beispiel 2 | A.11.02
Setzt man einen x-Wert in die erste Ableitung f'(x) ein, kann man die Steigung der Funktion berechnen in diesem Punkt. Diese Steigung ist auch die Tangentensteigung bzw. momentane Änderungsrate f'(x)=m. Bei anwendungsorientierten Funktion ist die Steigung oft die Änderung / Zunahme / Abnahme des Bestands.
Steigung berechnen mit der 1. Ableitung der Funktionsgleichung f'(x)=m , Beispiel 4 | A.11.02
Setzt man einen x-Wert in die erste Ableitung f'(x) ein, kann man die Steigung der Funktion berechnen in diesem Punkt. Diese Steigung ist auch die Tangentensteigung bzw. momentane Änderungsrate f'(x)=m. Bei anwendungsorientierten Funktion ist die Steigung oft die Änderung / Zunahme / Abnahme des Bestands.
Steigung berechnen mit der 1. Ableitung der Funktionsgleichung f'(x)=m , Beispiel 3 | A.11.02
Setzt man einen x-Wert in die erste Ableitung f'(x) ein, kann man die Steigung der Funktion berechnen in diesem Punkt. Diese Steigung ist auch die Tangentensteigung bzw. momentane Änderungsrate f'(x)=m. Bei anwendungsorientierten Funktion ist die Steigung oft die Änderung / Zunahme / Abnahme des Bestands.
Steigung berechnen mit der 1. Ableitung der Funktionsgleichung f'(x)=m , Beispiel 1 | A.11.02
Setzt man einen x-Wert in die erste Ableitung f'(x) ein, kann man die Steigung der Funktion berechnen in diesem Punkt. Diese Steigung ist auch die Tangentensteigung bzw. momentane Änderungsrate f'(x)=m. Bei anwendungsorientierten Funktion ist die Steigung oft die Änderung / Zunahme / Abnahme des Bestands.
Steigung berechnen mit der 1. Ableitung der Funktionsgleichung f'(x)=m | A.11.02
Setzt man einen x-Wert in die erste Ableitung f'(x) ein, kann man die Steigung der Funktion berechnen in diesem Punkt. Diese Steigung ist auch die Tangentensteigung bzw. momentane Änderungsrate f'(x)=m. Bei anwendungsorientierten Funktion ist die Steigung oft die Änderung / Zunahme / Abnahme des Bestands.
Beispielaufgaben zu Ableitungen | A.13.06
Hier gibt es ein paar vermischte Aufgaben rund um´s Ableiten. Es hat viel zu tun mit (selbstverständlich Ableiten), mit Tangenten und Tangentensteigungen, ein bisschen mit momentane Änderungsrate (=Steigung in einem Punkt) und durchschnittliche Änderungsrate (Steigung zwischen zwei Punkten).
Beispielaufgaben zu Ableitungen, Beispiel 3 | A.13.06
Hier gibt es ein paar vermischte Aufgaben rund um´s Ableiten. Es hat viel zu tun mit (selbstverständlich Ableiten), mit Tangenten und Tangentensteigungen, ein bisschen mit momentane Änderungsrate (=Steigung in einem Punkt) und durchschnittliche Änderungsrate (Steigung zwischen zwei Punkten).
Beispielaufgaben zu Ableitungen, Beispiel 6 | A.13.06
Hier gibt es ein paar vermischte Aufgaben rund um´s Ableiten. Es hat viel zu tun mit (selbstverständlich Ableiten), mit Tangenten und Tangentensteigungen, ein bisschen mit momentane Änderungsrate (=Steigung in einem Punkt) und durchschnittliche Änderungsrate (Steigung zwischen zwei Punkten).
Beispielaufgaben zu Ableitungen, Beispiel 5 | A.13.06
Hier gibt es ein paar vermischte Aufgaben rund um´s Ableiten. Es hat viel zu tun mit (selbstverständlich Ableiten), mit Tangenten und Tangentensteigungen, ein bisschen mit momentane Änderungsrate (=Steigung in einem Punkt) und durchschnittliche Änderungsrate (Steigung zwischen zwei Punkten).
Quelle
Systematik
- Mathematik (79)
- Mathematisch-Naturwissenschaftliche Fächer (79)
- Zuordnungen, Funktionen (2)
- Tangenten und Normalen (1)
- Zahlen (1)
- Differentialrechnung (1)
- Fächerübergreifende Themen (1)
Schlagwörter
- Analysis (76)
- Funktion (Mathematik) (75)
- E-Learning (75)
- Video (75)
- Steigung (70)
- Ableitung (62)
- Gerade (Mathematik) (44)