Steigung berechnen - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen
Steigung berechnen im Steigungsdreieck über Steigungsformel, Beispiel 1 | A.01.02
Die Steigung (heißt auch Anstieg) zwischen zwei Punkten bestimmt man mit der Steigungsformel (im Steigungsdreieck). Diese lautet: m=(y2y1)/(x2x1). Hierbei sind x1, x2, y1 und y2 natürlich die Koordinaten der beiden Punkte.
Steigung berechnen im Steigungsdreieck über Steigungsformel, Beispiel 4 | A.01.02
Die Steigung (heißt auch Anstieg) zwischen zwei Punkten bestimmt man mit der Steigungsformel (im Steigungsdreieck). Diese lautet: m=(y2y1)/(x2x1). Hierbei sind x1, x2, y1 und y2 natürlich die Koordinaten der beiden Punkte.
Steigung berechnen im Steigungsdreieck über Steigungsformel, Beispiel 5 | A.01.02
Die Steigung (heißt auch Anstieg) zwischen zwei Punkten bestimmt man mit der Steigungsformel (im Steigungsdreieck). Diese lautet: m=(y2y1)/(x2x1). Hierbei sind x1, x2, y1 und y2 natürlich die Koordinaten der beiden Punkte.
Steigung berechnen im Steigungsdreieck über Steigungsformel, Beispiel 2 | A.01.02
Die Steigung (heißt auch Anstieg) zwischen zwei Punkten bestimmt man mit der Steigungsformel (im Steigungsdreieck). Diese lautet: m=(y2y1)/(x2x1). Hierbei sind x1, x2, y1 und y2 natürlich die Koordinaten der beiden Punkte.
Steigung berechnen im Steigungsdreieck über Steigungsformel, Beispiel 3 | A.01.02
Die Steigung (heißt auch Anstieg) zwischen zwei Punkten bestimmt man mit der Steigungsformel (im Steigungsdreieck). Diese lautet: m=(y2y1)/(x2x1). Hierbei sind x1, x2, y1 und y2 natürlich die Koordinaten der beiden Punkte.
Steigung berechnen mit der 1. Ableitung der Funktionsgleichung f'(x)=m , Beispiel 2 | A.11.02
Setzt man einen x-Wert in die erste Ableitung f'(x) ein, kann man die Steigung der Funktion berechnen in diesem Punkt. Diese Steigung ist auch die Tangentensteigung bzw. momentane Änderungsrate f'(x)=m. Bei anwendungsorientierten Funktion ist die Steigung oft die Änderung / Zunahme / Abnahme des Bestands.
Steigung berechnen mit der 1. Ableitung der Funktionsgleichung f'(x)=m , Beispiel 3 | A.11.02
Setzt man einen x-Wert in die erste Ableitung f'(x) ein, kann man die Steigung der Funktion berechnen in diesem Punkt. Diese Steigung ist auch die Tangentensteigung bzw. momentane Änderungsrate f'(x)=m. Bei anwendungsorientierten Funktion ist die Steigung oft die Änderung / Zunahme / Abnahme des Bestands.
Quelle
Systematik
- Mathematik (56)
- Mathematisch-Naturwissenschaftliche Fächer (56)
- Anstieg (2)
- Lineare Funktionen (2)
- Zuordnungen, Funktionen (2)
Schlagwörter
- E-Learning (52)
- Video (52)
- Steigung (39)
- Geometrie (35)
- Gerade (Mathematik) (25)
- Schnittwinkel (25)
- Formel (Mathematik) (25)