Standardabweichung - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen
Varianz, Standardabweichung, Erwartungswert und wie man richtig damit rechnet; Beispiel 1 | W.11.05
Es gibt interessanterweise nur zwei Größen, die man braucht um eine recht gute Prognose für fast alle zufälligen Verteilungen des Universums anzugeben. Zum einen den Durchschnittswert ( = Erwartungswert ), zum anderen die Standardabweichung ( = Streuung ). Die Varianz ist eigentlich nur das Quadrat der Standardabweichung und braucht man im Prinzip eigentlich nie. (Beim ...
Varianz, Standardabweichung, Erwartungswert und wie man richtig damit rechnet; Beispiel 3 | W.11.05
Es gibt interessanterweise nur zwei Größen, die man braucht um eine recht gute Prognose für fast alle zufälligen Verteilungen des Universums anzugeben. Zum einen den Durchschnittswert ( = Erwartungswert ), zum anderen die Standardabweichung ( = Streuung ). Die Varianz ist eigentlich nur das Quadrat der Standardabweichung und braucht man im Prinzip eigentlich nie. (Beim ...
Varianz, Standardabweichung, Erwartungswert und wie man richtig damit rechnet | W.11.05
Es gibt interessanterweise nur zwei Größen, die man braucht um eine recht gute Prognose für fast alle zufälligen Verteilungen des Universums anzugeben. Zum einen den Durchschnittswert ( = Erwartungswert ), zum anderen die Standardabweichung ( = Streuung ). Die Varianz ist eigentlich nur das Quadrat der Standardabweichung und braucht man im Prinzip eigentlich nie. (Beim ...
Varianz, Standardabweichung, Erwartungswert und wie man richtig damit rechnet; Beispiel 2 | W.11.05
Es gibt interessanterweise nur zwei Größen, die man braucht um eine recht gute Prognose für fast alle zufälligen Verteilungen des Universums anzugeben. Zum einen den Durchschnittswert ( = Erwartungswert ), zum anderen die Standardabweichung ( = Streuung ). Die Varianz ist eigentlich nur das Quadrat der Standardabweichung und braucht man im Prinzip eigentlich nie. (Beim ...
Konfidenzintervalle mit zwei Sigma-Regel, Beispiel 3 | W.20.13
Da es sehr häufig vorkommt, dass ein Konfidenzintervall eine Größe von 95% hat, gibt es dafür eine Formel, die die Rechnung erheblich vereinfacht. Die untere Grenze des Konfidenzintervalls erhält man, in dem man vom Erwartungswert das 1,96-fache der Standardabweichung abzieht, die obere Grenze erhält man, in dem man zum Erwartungswert das 1,96-fache der ...
Konfidenzintervalle mit zwei Sigma-Regel, Beispiel 2 | W.20.13
Da es sehr häufig vorkommt, dass ein Konfidenzintervall eine Größe von 95% hat, gibt es dafür eine Formel, die die Rechnung erheblich vereinfacht. Die untere Grenze des Konfidenzintervalls erhält man, in dem man vom Erwartungswert das 1,96-fache der Standardabweichung abzieht, die obere Grenze erhält man, in dem man zum Erwartungswert das 1,96-fache der ...
Konfidenzintervalle mit zwei Sigma-Regel, Beispiel 1 | W.20.13
Da es sehr häufig vorkommt, dass ein Konfidenzintervall eine Größe von 95% hat, gibt es dafür eine Formel, die die Rechnung erheblich vereinfacht. Die untere Grenze des Konfidenzintervalls erhält man, in dem man vom Erwartungswert das 1,96-fache der Standardabweichung abzieht, die obere Grenze erhält man, in dem man zum Erwartungswert das 1,96-fache der ...
Konfidenzintervalle mit zwei Sigma-Regel | W.20.13
Da es sehr häufig vorkommt, dass ein Konfidenzintervall eine Größe von 95% hat, gibt es dafür eine Formel, die die Rechnung erheblich vereinfacht. Die untere Grenze des Konfidenzintervalls erhält man, in dem man vom Erwartungswert das 1,96-fache der Standardabweichung abzieht, die obere Grenze erhält man, in dem man zum Erwartungswert das 1,96-fache der ...
Quelle
- Bildungsmediathek NRW (26)
- Lehrer-Online (1)
- Deutscher Bildungsserver (1)
- Bildungsserver Hessen (1)
- Select Hessen (1)
Systematik
- Mathematik (30)
- Mathematisch-Naturwissenschaftliche Fächer (30)
- Stochastik (3)
- Grafische Darstellung (1)
- Häufigkeitsverteilungen, Diskrete Zufallsgrößen (1)
- Beurteilende Statistik (1)
- Wahrscheinlichkeitsrechnung (1)
Schlagwörter
- Standardabweichung (6)
- Erwartungswert (6)
- Varianz Binomialverteilung (5)
- Erwartungswert Binomialverteilung (5)
- Normalverteilung (5)
- Streuung (5)
- Durchschnitt (5)