Stützvektor - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

Abstand Punkt Gerade berechnen über Sinus des Winkels, Beispiel 2 | V.03.05
Eine Möglichkeit eine Entfernung Punkte Gerade zu berechnen, geht über den Sinus. Man bestimmt den Abstand vom Stützvektor der Gerade zum gesuchten Punkt, bestimmt den Winkel zwischen Verbindungsvektor von Punkt zu Stützvektor und bestimmt nun im rechtwinkligen Dreieck den Abstand Punkt-Gerade über Sinus, Gegenkathete und Hypotenuse.
Abstand Punkt Gerade berechnen über Sinus des Winkels, Beispiel 1 | V.03.05
Eine Möglichkeit eine Entfernung Punkte Gerade zu berechnen, geht über den Sinus. Man bestimmt den Abstand vom Stützvektor der Gerade zum gesuchten Punkt, bestimmt den Winkel zwischen Verbindungsvektor von Punkt zu Stützvektor und bestimmt nun im rechtwinkligen Dreieck den Abstand Punkt-Gerade über Sinus, Gegenkathete und Hypotenuse.
Abstand Punkt Gerade berechnen über Sinus des Winkels | V.03.05
Eine Möglichkeit eine Entfernung Punkte Gerade zu berechnen, geht über den Sinus. Man bestimmt den Abstand vom Stützvektor der Gerade zum gesuchten Punkt, bestimmt den Winkel zwischen Verbindungsvektor von Punkt zu Stützvektor und bestimmt nun im rechtwinkligen Dreieck den Abstand Punkt-Gerade über Sinus, Gegenkathete und Hypotenuse.
Abstand Punkt Gerade berechnen über Sinus des Winkels, Beispiel 3 | V.03.05
Eine Möglichkeit eine Entfernung Punkte Gerade zu berechnen, geht über den Sinus. Man bestimmt den Abstand vom Stützvektor der Gerade zum gesuchten Punkt, bestimmt den Winkel zwischen Verbindungsvektor von Punkt zu Stützvektor und bestimmt nun im rechtwinkligen Dreieck den Abstand Punkt-Gerade über Sinus, Gegenkathete und Hypotenuse.
Parameterform einer Geradengleichung mit Ortsvektor und Stützvektor, Beispiel 2 | V.01.03
Will man eine Gerade aufstellen, so braucht man zwei Punkte. Einen der beiden Punkte verwendet man als Stützvektor (das ist der erste Vektor, der auch Ortsvektor, Aufpunkt, Anbindungspunkt, etc.. heißt), die Differenz der beiden Punkte nimmt man als Richtungsvektor (dieser Vektor hat einen Parameter vorne dran). Die erhaltene Geradengleichung heißt Parameterform. Andere ...
Parameterform einer Geradengleichung mit Ortsvektor und Stützvektor | V.01.03
Will man eine Gerade aufstellen, so braucht man zwei Punkte. Einen der beiden Punkte verwendet man als Stützvektor (das ist der erste Vektor, der auch Ortsvektor, Aufpunkt, Anbindungspunkt, etc.. heißt), die Differenz der beiden Punkte nimmt man als Richtungsvektor (dieser Vektor hat einen Parameter vorne dran). Die erhaltene Geradengleichung heißt Parameterform. Andere ...
Parameterform einer Geradengleichung mit Ortsvektor und Stützvektor, Beispiel 1 | V.01.03
Will man eine Gerade aufstellen, so braucht man zwei Punkte. Einen der beiden Punkte verwendet man als Stützvektor (das ist der erste Vektor, der auch Ortsvektor, Aufpunkt, Anbindungspunkt, etc.. heißt), die Differenz der beiden Punkte nimmt man als Richtungsvektor (dieser Vektor hat einen Parameter vorne dran). Die erhaltene Geradengleichung heißt Parameterform. Andere ...
Abstand paralleler Geraden, Abstand paralleler Ebenen | V.03.08
Den Abstand von zwei parallelen Geraden berechnet man, in dem man den Stützvektor der einen Gerade nimmt und den Abstand zur anderen Gerade berechnet. Ein Abstand Gerade Ebene macht nur Sinn, wenn beide parallel sind. Man nimmt den Stützvektor der Gerade und berechnet den Abstand zur Ebene (z.B. über HNF). Den Abstand von zwei parallelen Ebenen berechnet man, in dem man ...
Abstand paralleler Geraden, Abstand paralleler Ebenen; Beispiel 2 | V.03.08
Den Abstand von zwei parallelen Geraden berechnet man, in dem man den Stützvektor der einen Gerade nimmt und den Abstand zur anderen Gerade berechnet. Ein Abstand Gerade Ebene macht nur Sinn, wenn beide parallel sind. Man nimmt den Stützvektor der Gerade und berechnet den Abstand zur Ebene (z.B. über HNF). Den Abstand von zwei parallelen Ebenen berechnet man, in dem man ...
Abstand paralleler Geraden, Abstand paralleler Ebenen; Beispiel 3 | V.03.08
Den Abstand von zwei parallelen Geraden berechnet man, in dem man den Stützvektor der einen Gerade nimmt und den Abstand zur anderen Gerade berechnet. Ein Abstand Gerade Ebene macht nur Sinn, wenn beide parallel sind. Man nimmt den Stützvektor der Gerade und berechnet den Abstand zur Ebene (z.B. über HNF). Den Abstand von zwei parallelen Ebenen berechnet man, in dem man ...