Schwerpunkt berechnen - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen
Schwerpunkt Dreieck, Mittelpunkt Strecke, Verbindungsvektor berechnen, Beispiel 1 | V.01.02
Den Mittelpunkt einer Strecke bestimmt man, in dem man die Endpunkte der Strecke zusammenzählt und durch 2 teilt. Den Schwerpunkt eines Dreiecks bestimmt man, in dem man die Koordinaten der Eckpunkte zusammenzählt und durch 3 teilt. Den Verbindungsvektor von einem Punkt zu einem zweiten Punkt stellt man auf, in dem man die Koordinaten des Anfangspunkt vom Endpunkt ...
Schwerpunkt Dreieck, Mittelpunkt Strecke, Verbindungsvektor berechnen | V.01.02
Den Mittelpunkt einer Strecke bestimmt man, in dem man die Endpunkte der Strecke zusammenzählt und durch 2 teilt. Den Schwerpunkt eines Dreiecks bestimmt man, in dem man die Koordinaten der Eckpunkte zusammenzählt und durch 3 teilt. Den Verbindungsvektor von einem Punkt zu einem zweiten Punkt stellt man auf, in dem man die Koordinaten des Anfangspunkt vom Endpunkt ...
Schwerpunkt Dreieck, Mittelpunkt Strecke, Verbindungsvektor berechnen, Beispiel 2 | V.01.02
Den Mittelpunkt einer Strecke bestimmt man, in dem man die Endpunkte der Strecke zusammenzählt und durch 2 teilt. Den Schwerpunkt eines Dreiecks bestimmt man, in dem man die Koordinaten der Eckpunkte zusammenzählt und durch 3 teilt. Den Verbindungsvektor von einem Punkt zu einem zweiten Punkt stellt man auf, in dem man die Koordinaten des Anfangspunkt vom Endpunkt ...
Seitenhalbierende berechnen, Beispiel 2 | A.02.12
Wie berechnet man die Gleichung einer Seitenhalbierenden? Na ja, eine Seitenhalbierende geht durch einen Punkt und die Mitte der gegenüberliegenden Seite. Also bestimmt man den Mittelpunkt der gegenüberliegenden Seite (siehe A.01.01) und hat nun zwei Punkte, durch welche die Gerade geht. Nun kann man die Geradengleichung über die beiden Punkte bestimmen (siehe A.02.10 bzw. ...
Seitenhalbierende berechnen, Beispiel 3 | A.02.12
Wie berechnet man die Gleichung einer Seitenhalbierenden? Na ja, eine Seitenhalbierende geht durch einen Punkt und die Mitte der gegenüberliegenden Seite. Also bestimmt man den Mittelpunkt der gegenüberliegenden Seite (siehe A.01.01) und hat nun zwei Punkte, durch welche die Gerade geht. Nun kann man die Geradengleichung über die beiden Punkte bestimmen (siehe A.02.10 bzw. ...
Seitenhalbierende berechnen, Beispiel 1 | A.02.12
Wie berechnet man die Gleichung einer Seitenhalbierenden? Na ja, eine Seitenhalbierende geht durch einen Punkt und die Mitte der gegenüberliegenden Seite. Also bestimmt man den Mittelpunkt der gegenüberliegenden Seite (siehe A.01.01) und hat nun zwei Punkte, durch welche die Gerade geht. Nun kann man die Geradengleichung über die beiden Punkte bestimmen (siehe A.02.10 bzw. ...
Seitenhalbierende berechnen | A.02.12
Wie berechnet man die Gleichung einer Seitenhalbierenden? Na ja, eine Seitenhalbierende geht durch einen Punkt und die Mitte der gegenüberliegenden Seite. Also bestimmt man den Mittelpunkt der gegenüberliegenden Seite (siehe A.01.01) und hat nun zwei Punkte, durch welche die Gerade geht. Nun kann man die Geradengleichung über die beiden Punkte bestimmen (siehe A.02.10 bzw. ...
Volumenberechnung
Mit diesem ergänzenden Arbeitsblatt für den Mathematikunterricht der Sekundarstufe I, das an die Unterrichtseinheit "Flächen- und Winkelberechnung" anknüpft, berechnen die Schülerinnen und Schüler Volumina verschiedener geometrischer Körper am Beispiel des Gerüstbaus. Um das Material an die Lerngruppe anzupassen, können Schwerpunkt und Schwierigkeitsgrad ...
Quelle
Systematik
- Mathematik (8)
- Mathematisch-Naturwissenschaftliche Fächer (8)
- Zahlen (1)
- Fächerübergreifende Themen (1)
- Fachdidaktik (1)
- Grundschule (1)
Schlagwörter
- Geometrie (5)
- Schwerlinie Berechnen (4)
- Schwerpunkt Berechnen (4)
- Gleichung (Mathematik) Schwerpunkt (4)
- Geradengleichung (4)
- Seitenhalbierende (4)
- Schnittpunkt (4)