Schnittpunkt zwei Ebenen - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

Schnittpunkt zwei Ebenen - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

Schnittpunkt zweier Ebenen berechnen, Beispiel 3 | V.02.03
Zwei Ebenen können auf drei Arten zueinander liegen: Sie können parallel sein, identisch sein oder sie haben eine Schnittgerade. Wenn die Ebenen in Koordinatenform gegeben sind, erkennt man die drei Lagen sehr schnell. Wenn die linken Seiten der Koordinatengleichungen Vielfache voneinander sind, sind die Ebenen parallel oder identisch. Falls nicht, haben sie eine ...
Schnittpunkt zweier Ebenen berechnen, Beispiel 1 | V.02.03
Zwei Ebenen können auf drei Arten zueinander liegen: Sie können parallel sein, identisch sein oder sie haben eine Schnittgerade. Wenn die Ebenen in Koordinatenform gegeben sind, erkennt man die drei Lagen sehr schnell. Wenn die linken Seiten der Koordinatengleichungen Vielfache voneinander sind, sind die Ebenen parallel oder identisch. Falls nicht, haben sie eine ...
Schnittpunkt zweier Ebenen berechnen | V.02.03
Zwei Ebenen können auf drei Arten zueinander liegen: Sie können parallel sein, identisch sein oder sie haben eine Schnittgerade. Wenn die Ebenen in Koordinatenform gegeben sind, erkennt man die drei Lagen sehr schnell. Wenn die linken Seiten der Koordinatengleichungen Vielfache voneinander sind, sind die Ebenen parallel oder identisch. Falls nicht, haben sie eine ...
Schnittpunkt zweier Ebenen berechnen, Beispiel 2 | V.02.03
Zwei Ebenen können auf drei Arten zueinander liegen: Sie können parallel sein, identisch sein oder sie haben eine Schnittgerade. Wenn die Ebenen in Koordinatenform gegeben sind, erkennt man die drei Lagen sehr schnell. Wenn die linken Seiten der Koordinatengleichungen Vielfache voneinander sind, sind die Ebenen parallel oder identisch. Falls nicht, haben sie eine ...
Schnittpunkt zweier Ebenen berechnen, Beispiel 4 | V.02.03
Zwei Ebenen können auf drei Arten zueinander liegen: Sie können parallel sein, identisch sein oder sie haben eine Schnittgerade. Wenn die Ebenen in Koordinatenform gegeben sind, erkennt man die drei Lagen sehr schnell. Wenn die linken Seiten der Koordinatengleichungen Vielfache voneinander sind, sind die Ebenen parallel oder identisch. Falls nicht, haben sie eine ...
Schnittmenge berechnen, Schnittpunkt, Schnittgerade | V.02
Eine Schnittmenge zu berechnen, bedeutet Geraden und Ebenen auf Schnittpunkte und Schnittgeraden zu überprüfen. Dieses nennt man auch „gegenseitige Lage“ bestimmen. Wichtig sind gegenseitige Lage von zwei Geraden, gegenseitige Lage einer Gerade mit einer Ebene und die gegenseitige Lage zweier Ebenen. Die gesuchten Lösungen (bzw. den Lösungsvektor) berechnet man immer ...
Spurpunkte einer Ebene berechnen | V.01.10
Spurpunkte von Ebenen sind Schnittpunkte mit den Koordinatenachsen. Den Schnittpunkt mit der x1-Achse berechnet man, indem man in die Koordinatengleichung der Ebene x2=0 und x3=0 einsetzt und nach x1 auflöst. Ebenso berechnet man die Achsenschnittpunkte mit der x2- und der x3-Achse.
Spurpunkte einer Ebene berechnen, Beispiel 2 | V.01.10
Spurpunkte von Ebenen sind Schnittpunkte mit den Koordinatenachsen. Den Schnittpunkt mit der x1-Achse berechnet man, indem man in die Koordinatengleichung der Ebene x2=0 und x3=0 einsetzt und nach x1 auflöst. Ebenso berechnet man die Achsenschnittpunkte mit der x2- und der x3-Achse.
Spurpunkte einer Ebene berechnen, Beispiel 4 | V.01.10
Spurpunkte von Ebenen sind Schnittpunkte mit den Koordinatenachsen. Den Schnittpunkt mit der x1-Achse berechnet man, indem man in die Koordinatengleichung der Ebene x2=0 und x3=0 einsetzt und nach x1 auflöst. Ebenso berechnet man die Achsenschnittpunkte mit der x2- und der x3-Achse.
Spurpunkte einer Ebene berechnen, Beispiel 1 | V.01.10
Spurpunkte von Ebenen sind Schnittpunkte mit den Koordinatenachsen. Den Schnittpunkt mit der x1-Achse berechnet man, indem man in die Koordinatengleichung der Ebene x2=0 und x3=0 einsetzt und nach x1 auflöst. Ebenso berechnet man die Achsenschnittpunkte mit der x2- und der x3-Achse.