Schnittmenge berechnen - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen
Schnittmenge berechnen, Schnittpunkt, Schnittgerade | V.02
Eine Schnittmenge zu berechnen, bedeutet Geraden und Ebenen auf Schnittpunkte und Schnittgeraden zu überprüfen. Dieses nennt man auch gegenseitige Lage bestimmen. Wichtig sind gegenseitige Lage von zwei Geraden, gegenseitige Lage einer Gerade mit einer Ebene und die gegenseitige Lage zweier Ebenen. Die gesuchten Lösungen (bzw. den Lösungsvektor) berechnet man immer ...
Schnittpunkt zweier Geraden berechnen, Beispiel 3 | V.02.01
Zwei Geraden können auf vier Lagen zu einander liegen: wenn die Richtungsvektoren beider Geraden Vielfache voneinander sind, sind die Geraden parallel oder identisch. Sind die Richtungsvektoren keine Vielfache voneinander, so liegen die Geraden windschief oder sie haben einen Schnittpunkt. Vorgehensweise: Man betrachtet die Richtungsvektoren beider Geraden und danach setzt ...
Schnittpunkt zweier Geraden berechnen, Beispiel 4 | V.02.01
Zwei Geraden können auf vier Lagen zu einander liegen: wenn die Richtungsvektoren beider Geraden Vielfache voneinander sind, sind die Geraden parallel oder identisch. Sind die Richtungsvektoren keine Vielfache voneinander, so liegen die Geraden windschief oder sie haben einen Schnittpunkt. Vorgehensweise: Man betrachtet die Richtungsvektoren beider Geraden und danach setzt ...
Schnittpunkt zweier Geraden berechnen, Beispiel 1 | V.02.01
Zwei Geraden können auf vier Lagen zu einander liegen: wenn die Richtungsvektoren beider Geraden Vielfache voneinander sind, sind die Geraden parallel oder identisch. Sind die Richtungsvektoren keine Vielfache voneinander, so liegen die Geraden windschief oder sie haben einen Schnittpunkt. Vorgehensweise: Man betrachtet die Richtungsvektoren beider Geraden und danach setzt ...
Schnittpunkt zweier Geraden berechnen | V.02.01
Zwei Geraden können auf vier Lagen zu einander liegen: wenn die Richtungsvektoren beider Geraden Vielfache voneinander sind, sind die Geraden parallel oder identisch. Sind die Richtungsvektoren keine Vielfache voneinander, so liegen die Geraden windschief oder sie haben einen Schnittpunkt. Vorgehensweise: Man betrachtet die Richtungsvektoren beider Geraden und danach setzt ...
Schnittpunkt zweier Geraden berechnen, Beispiel 2 | V.02.01
Zwei Geraden können auf vier Lagen zu einander liegen: wenn die Richtungsvektoren beider Geraden Vielfache voneinander sind, sind die Geraden parallel oder identisch. Sind die Richtungsvektoren keine Vielfache voneinander, so liegen die Geraden windschief oder sie haben einen Schnittpunkt. Vorgehensweise: Man betrachtet die Richtungsvektoren beider Geraden und danach setzt ...
Schnittpunkt Gerade Ebene berechnen, Beispiel 2 | V.02.02
Es gibt drei Lagen, die eine Gerade und eine Ebene annehmen können. Man unterscheidet diese drei Fälle einfach in dem man die Schnittpunkte von Gerade und Ebene ausrechnet. 1.Fall: Gerade und Ebene sind parallel, in dem Fall gibt es keine Schnittpunkte. 2.Fall: Die Gerade liegt in der Ebene, in dem Fall gibts unendlich viele Schnittpunkte. 3.Fall: Es gibt einen ...
Schnittpunkt zweier Ebenen berechnen, Beispiel 3 | V.02.03
Zwei Ebenen können auf drei Arten zueinander liegen: Sie können parallel sein, identisch sein oder sie haben eine Schnittgerade. Wenn die Ebenen in Koordinatenform gegeben sind, erkennt man die drei Lagen sehr schnell. Wenn die linken Seiten der Koordinatengleichungen Vielfache voneinander sind, sind die Ebenen parallel oder identisch. Falls nicht, haben sie eine ...
Schnittpunkt Gerade Ebene berechnen, Beispiel 1 | V.02.02
Es gibt drei Lagen, die eine Gerade und eine Ebene annehmen können. Man unterscheidet diese drei Fälle einfach in dem man die Schnittpunkte von Gerade und Ebene ausrechnet. 1.Fall: Gerade und Ebene sind parallel, in dem Fall gibt es keine Schnittpunkte. 2.Fall: Die Gerade liegt in der Ebene, in dem Fall gibts unendlich viele Schnittpunkte. 3.Fall: Es gibt einen ...
Schnittpunkt zweier Ebenen berechnen, Beispiel 1 | V.02.03
Zwei Ebenen können auf drei Arten zueinander liegen: Sie können parallel sein, identisch sein oder sie haben eine Schnittgerade. Wenn die Ebenen in Koordinatenform gegeben sind, erkennt man die drei Lagen sehr schnell. Wenn die linken Seiten der Koordinatengleichungen Vielfache voneinander sind, sind die Ebenen parallel oder identisch. Falls nicht, haben sie eine ...
Quelle
Systematik
Schlagwörter
- Schnittpunkt Zweier Geraden (5)
- Schnittpunkt Geraden (5)
- Schnittpunkt Zwei Ebenen (5)
- Schnittpunkt Zweier Ebenen (5)
- Identische Ebenen (5)
- Parallele Geraden (5)
- Schnittpunkt Gerade Ebene (4)