Schachtel - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

Schachtel - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

Solarofen in einer Pizza-Schachtel
Dieses Experiment thematisiert "Wärme" und richtet sich an Lernende im Alter bis 10 Jahre.
Extremwertaufgaben im Alltag: Zylinder in einer Kugel, Volumen einer Schachtel | A.21.02
Bei einigen Typen von Extremwertaufgaben sind keine Funktionen im Spiel. (Z.B. steckt ein Zylinder in einer Kugel, der dann maximales Volumen haben soll. Oder das Volumen einer Schachtel soll maximal werden, die aus einem Karton gebastelt wird oder ). Es geht also um Anwendungen aus dem „Alltag“. Ich nenne diese reale Anwendungen, aber eigentlich haben sie keinen richtigen, ...
Extremwertaufgaben im Alltag: Zylinder in einer Kugel, Volumen einer Schachtel, Beispiel 3 | A.21.02
Bei einigen Typen von Extremwertaufgaben sind keine Funktionen im Spiel. (Z.B. steckt ein Zylinder in einer Kugel, der dann maximales Volumen haben soll. Oder das Volumen einer Schachtel soll maximal werden, die aus einem Karton gebastelt wird oder ). Es geht also um Anwendungen aus dem „Alltag“. Ich nenne diese reale Anwendungen, aber eigentlich haben sie keinen richtigen, ...
Extremwertaufgaben im Alltag: Zylinder in einer Kugel, Volumen einer Schachtel, Beispiel 4 | A.21.02
Bei einigen Typen von Extremwertaufgaben sind keine Funktionen im Spiel. (Z.B. steckt ein Zylinder in einer Kugel, der dann maximales Volumen haben soll. Oder das Volumen einer Schachtel soll maximal werden, die aus einem Karton gebastelt wird oder ). Es geht also um Anwendungen aus dem „Alltag“. Ich nenne diese reale Anwendungen, aber eigentlich haben sie keinen richtigen, ...
Extremwertaufgaben im Alltag: Zylinder in einer Kugel, Volumen einer Schachtel, Beispiel 6 | A.21.02
Bei einigen Typen von Extremwertaufgaben sind keine Funktionen im Spiel. (Z.B. steckt ein Zylinder in einer Kugel, der dann maximales Volumen haben soll. Oder das Volumen einer Schachtel soll maximal werden, die aus einem Karton gebastelt wird oder ). Es geht also um Anwendungen aus dem „Alltag“. Ich nenne diese reale Anwendungen, aber eigentlich haben sie keinen richtigen, ...
Extremwertaufgaben im Alltag: Zylinder in einer Kugel, Volumen einer Schachtel, Beispiel 5 | A.21.02
Bei einigen Typen von Extremwertaufgaben sind keine Funktionen im Spiel. (Z.B. steckt ein Zylinder in einer Kugel, der dann maximales Volumen haben soll. Oder das Volumen einer Schachtel soll maximal werden, die aus einem Karton gebastelt wird oder ). Es geht also um Anwendungen aus dem „Alltag“. Ich nenne diese reale Anwendungen, aber eigentlich haben sie keinen richtigen, ...
Extremwertaufgaben im Alltag: Zylinder in einer Kugel, Volumen einer Schachtel, Beispiel 1 | A.21.02
Bei einigen Typen von Extremwertaufgaben sind keine Funktionen im Spiel. (Z.B. steckt ein Zylinder in einer Kugel, der dann maximales Volumen haben soll. Oder das Volumen einer Schachtel soll maximal werden, die aus einem Karton gebastelt wird oder ). Es geht also um Anwendungen aus dem „Alltag“. Ich nenne diese reale Anwendungen, aber eigentlich haben sie keinen richtigen, ...
Extremwertaufgaben im Alltag: Zylinder in einer Kugel, Volumen einer Schachtel, Beispiel 2 | A.21.02
Bei einigen Typen von Extremwertaufgaben sind keine Funktionen im Spiel. (Z.B. steckt ein Zylinder in einer Kugel, der dann maximales Volumen haben soll. Oder das Volumen einer Schachtel soll maximal werden, die aus einem Karton gebastelt wird oder ). Es geht also um Anwendungen aus dem „Alltag“. Ich nenne diese reale Anwendungen, aber eigentlich haben sie keinen richtigen, ...
DynaGeo: Oben offene Schachtel
Hier werden einige interaktive Konstruktionen angeboten, die mit Hilfe der dynamischen Geometriesoftware (DGS) EUKLID DynaGeo erstellt wurden. Die Materialien eignen sich für verschiedene Themengebiete und Klassenstufen.
Quader berechnen: Quader-Oberfläche, Quader-Volumen, Quader-Raumdiagonale | T.06.02
Ein Quader ist im Prinzip eine Schachtel. Oder blöd gesagt: eine Art Würfel, nur dass die Seitenlängen alle unterschiedlich sein können. Wir führen hier ein paar Berechnungen zu Oberfläche, zum Rauminhalt (Volumen) und zur Raumdiagonale durch.