SNV - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

SNV - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

Standardnormalverteilung: was das ist und wie man damit rechnet, Beispiel 2 | W.18.02
Die Standard-Normal-Verteilung (=SNV) ist eine besondere Verteilung: Der Mittelwert der SNV ist immer Null, die gesamte Fläche zwischen der zugehörigen Funktion und der x-Achse ist 1. Natürlich beschreibt die Funktion der SNV die Gaußsche Glockenkurve (so wie jede Normalverteilung auch).
Standardnormalverteilung: was das ist und wie man damit rechnet, Beispiel 3 | W.18.02
Die Standard-Normal-Verteilung (=SNV) ist eine besondere Verteilung: Der Mittelwert der SNV ist immer Null, die gesamte Fläche zwischen der zugehörigen Funktion und der x-Achse ist 1. Natürlich beschreibt die Funktion der SNV die Gaußsche Glockenkurve (so wie jede Normalverteilung auch).
Standardnormalverteilung: was das ist und wie man damit rechnet, Beispiel 1 | W.18.02
Die Standard-Normal-Verteilung (=SNV) ist eine besondere Verteilung: Der Mittelwert der SNV ist immer Null, die gesamte Fläche zwischen der zugehörigen Funktion und der x-Achse ist 1. Natürlich beschreibt die Funktion der SNV die Gaußsche Glockenkurve (so wie jede Normalverteilung auch).
Standardnormalverteilung: was das ist und wie man damit rechnet, Beispiel 4 | W.18.02
Die Standard-Normal-Verteilung (=SNV) ist eine besondere Verteilung: Der Mittelwert der SNV ist immer Null, die gesamte Fläche zwischen der zugehörigen Funktion und der x-Achse ist 1. Natürlich beschreibt die Funktion der SNV die Gaußsche Glockenkurve (so wie jede Normalverteilung auch).
Standardnormalverteilung: was das ist und wie man damit rechnet | W.18.02
Die Standard-Normal-Verteilung (=SNV) ist eine besondere Verteilung: Der Mittelwert der SNV ist immer Null, die gesamte Fläche zwischen der zugehörigen Funktion und der x-Achse ist 1. Natürlich beschreibt die Funktion der SNV die Gaußsche Glockenkurve (so wie jede Normalverteilung auch).
Stiftung Neue Verantwortung
Die Stiftung Neue Verantwortung (SNV) ist ein gemeinnütziger Think Tank für die aktuellen politischen und gesellschaftlichen Fragen neuer Technologien (2020-22).
Moivre-Laplace Näherungsformel, Beispiel 2 | W.18.03
Gelegentlich muss man die Binomialverteilung durch die Gaußverteilung annähern. (Vor allem wenn die Zahlen so groß sind, dass jeder Taschenrechner aussteigt [das geht relativ schnell]). Das ist erlaubt wenn die sogenannte „Laplace Bedingung“ erfüllt ist, also wenn die Standardabweichung größer als 3 ist. Ist das der Fall, kann die Annäherung durchgeführt werden, d.h. ...
Moivre-Laplace Näherungsformel | W.18.03
Gelegentlich muss man die Binomialverteilung durch die Gaußverteilung annähern. (Vor allem wenn die Zahlen so groß sind, dass jeder Taschenrechner aussteigt [das geht relativ schnell]). Das ist erlaubt wenn die sogenannte „Laplace Bedingung“ erfüllt ist, also wenn die Standardabweichung größer als 3 ist. Ist das der Fall, kann die Annäherung durchgeführt werden, d.h. ...
Moivre-Laplace Näherungsformel, Beispiel 1 | W.18.03
Gelegentlich muss man die Binomialverteilung durch die Gaußverteilung annähern. (Vor allem wenn die Zahlen so groß sind, dass jeder Taschenrechner aussteigt [das geht relativ schnell]). Das ist erlaubt wenn die sogenannte „Laplace Bedingung“ erfüllt ist, also wenn die Standardabweichung größer als 3 ist. Ist das der Fall, kann die Annäherung durchgeführt werden, d.h. ...
Moivre-Laplace Näherungsformel, Beispiel 3 | W.18.03
Gelegentlich muss man die Binomialverteilung durch die Gaußverteilung annähern. (Vor allem wenn die Zahlen so groß sind, dass jeder Taschenrechner aussteigt [das geht relativ schnell]). Das ist erlaubt wenn die sogenannte „Laplace Bedingung“ erfüllt ist, also wenn die Standardabweichung größer als 3 ist. Ist das der Fall, kann die Annäherung durchgeführt werden, d.h. ...