SNV - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen
Standardnormalverteilung: was das ist und wie man damit rechnet, Beispiel 2 | W.18.02
Die Standard-Normal-Verteilung (=SNV) ist eine besondere Verteilung: Der Mittelwert der SNV ist immer Null, die gesamte Fläche zwischen der zugehörigen Funktion und der x-Achse ist 1. Natürlich beschreibt die Funktion der SNV die Gaußsche Glockenkurve (so wie jede Normalverteilung auch).
Standardnormalverteilung: was das ist und wie man damit rechnet, Beispiel 3 | W.18.02
Die Standard-Normal-Verteilung (=SNV) ist eine besondere Verteilung: Der Mittelwert der SNV ist immer Null, die gesamte Fläche zwischen der zugehörigen Funktion und der x-Achse ist 1. Natürlich beschreibt die Funktion der SNV die Gaußsche Glockenkurve (so wie jede Normalverteilung auch).
Standardnormalverteilung: was das ist und wie man damit rechnet, Beispiel 1 | W.18.02
Die Standard-Normal-Verteilung (=SNV) ist eine besondere Verteilung: Der Mittelwert der SNV ist immer Null, die gesamte Fläche zwischen der zugehörigen Funktion und der x-Achse ist 1. Natürlich beschreibt die Funktion der SNV die Gaußsche Glockenkurve (so wie jede Normalverteilung auch).
Standardnormalverteilung: was das ist und wie man damit rechnet, Beispiel 4 | W.18.02
Die Standard-Normal-Verteilung (=SNV) ist eine besondere Verteilung: Der Mittelwert der SNV ist immer Null, die gesamte Fläche zwischen der zugehörigen Funktion und der x-Achse ist 1. Natürlich beschreibt die Funktion der SNV die Gaußsche Glockenkurve (so wie jede Normalverteilung auch).
Standardnormalverteilung: was das ist und wie man damit rechnet | W.18.02
Die Standard-Normal-Verteilung (=SNV) ist eine besondere Verteilung: Der Mittelwert der SNV ist immer Null, die gesamte Fläche zwischen der zugehörigen Funktion und der x-Achse ist 1. Natürlich beschreibt die Funktion der SNV die Gaußsche Glockenkurve (so wie jede Normalverteilung auch).
Moivre-Laplace Näherungsformel, Beispiel 2 | W.18.03
Gelegentlich muss man die Binomialverteilung durch die Gaußverteilung annähern. (Vor allem wenn die Zahlen so groß sind, dass jeder Taschenrechner aussteigt [das geht relativ schnell]). Das ist erlaubt wenn die sogenannte Laplace Bedingung erfüllt ist, also wenn die Standardabweichung größer als 3 ist. Ist das der Fall, kann die Annäherung durchgeführt werden, d.h. ...
Moivre-Laplace Näherungsformel | W.18.03
Gelegentlich muss man die Binomialverteilung durch die Gaußverteilung annähern. (Vor allem wenn die Zahlen so groß sind, dass jeder Taschenrechner aussteigt [das geht relativ schnell]). Das ist erlaubt wenn die sogenannte Laplace Bedingung erfüllt ist, also wenn die Standardabweichung größer als 3 ist. Ist das der Fall, kann die Annäherung durchgeführt werden, d.h. ...
Moivre-Laplace Näherungsformel, Beispiel 1 | W.18.03
Gelegentlich muss man die Binomialverteilung durch die Gaußverteilung annähern. (Vor allem wenn die Zahlen so groß sind, dass jeder Taschenrechner aussteigt [das geht relativ schnell]). Das ist erlaubt wenn die sogenannte Laplace Bedingung erfüllt ist, also wenn die Standardabweichung größer als 3 ist. Ist das der Fall, kann die Annäherung durchgeführt werden, d.h. ...
Moivre-Laplace Näherungsformel, Beispiel 3 | W.18.03
Gelegentlich muss man die Binomialverteilung durch die Gaußverteilung annähern. (Vor allem wenn die Zahlen so groß sind, dass jeder Taschenrechner aussteigt [das geht relativ schnell]). Das ist erlaubt wenn die sogenannte Laplace Bedingung erfüllt ist, also wenn die Standardabweichung größer als 3 ist. Ist das der Fall, kann die Annäherung durchgeführt werden, d.h. ...
Quelle
Systematik
- Mathematik (9)
- Mathematisch-Naturwissenschaftliche Fächer (9)
- Politik (1)
- Sozialkundlich-Philosophische Fächer (1)
Schlagwörter
- Snv (5)
- Standardnormalverteilung (5)
- Glockenkurve (5)
- Gauß Verteilung (5)
- Laplace (4)
- Laplace Gleichung (4)
- Laplace Bedingung (4)