Rationale - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

Rationale - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

Gebrochen-rationale Funktion / Bruchfunktionen: kurze Einführung | A.43
Bruchfunktionen sind natürlich Funktionen in Bruchform. Tatsächlich heißen sie „gebrochen-rationale Funktionen“ oder „gebrochene Funktionen“. Das typische Merkmal dieser Funktionen sind senkrechte Asymptoten (Polstellen), die das Schaubild in zwei oder mehrere Teile aufteilt.
Gebrochen-rationale Funktionen: So leitet man eine Bruchfunktion ab, Beispiel 3 | A.43.02
Die Ableitung eines Bruchs geht mit der sogenannten „Quotientenregel“. Der Zähler (oben) wird „u“ genannt, der Nenner (unten) wird „v“ genannt. Die Formel für Ableitung lautet: f'(x)=(u'·v-u·v')/(v²).
Funktionsanalyse gebrochen-rationale Funktion mit Beispielen und Übungen, Beispiel 3 | A.43.10
Ein paar Beispiele von Funktionsuntersuchungen von gebrochen-rationalen Funktionen. (Wir betrachten Nullstellen, Ableitungen, Extrem- und Wendepunkte, alle Asymptoten und fertigen eine Skizze.) In den ersten beiden Funktionen gibt es Polstellen ohne Vorzeichenwechsel (=ohne VZW).
Funktionsanalyse gebrochen-rationale Funktion mit Beispielen und Übungen | A.43.10
Ein paar Beispiele von Funktionsuntersuchungen von gebrochen-rationalen Funktionen. (Wir betrachten Nullstellen, Ableitungen, Extrem- und Wendepunkte, alle Asymptoten und fertigen eine Skizze.) In den ersten beiden Funktionen gibt es Polstellen ohne Vorzeichenwechsel (=ohne VZW).
Gebrochen-rationale Funktionen / Bruchfunktion: Nullstellen berechnen, Beispiel 1 | A.43.01
Die Schnittpunkte einer Bruchfunktion mit der x-Achse bestimmt man, in dem man die Funktion mit dem Nenner multipliziert. Damit ist man den Bruch los und führt die Berechnung der Nullstellen auf die eine viel einfachere ganzrationale Funktion zurück.
Gebrochen-rationale Funktionen: So leitet man eine Bruchfunktion ab, Beispiel 1 | A.43.02
Die Ableitung eines Bruchs geht mit der sogenannten „Quotientenregel“. Der Zähler (oben) wird „u“ genannt, der Nenner (unten) wird „v“ genannt. Die Formel für Ableitung lautet: f'(x)=(u'·v-u·v')/(v²).
Gebrochen-rationale Funktionen: So leitet man eine Bruchfunktion ab | A.43.02
Die Ableitung eines Bruchs geht mit der sogenannten „Quotientenregel“. Der Zähler (oben) wird „u“ genannt, der Nenner (unten) wird „v“ genannt. Die Formel für Ableitung lautet: f'(x)=(u'·v-u·v')/(v²).
Funktionsanalyse gebrochen-rationale Funktion mit Beispielen und Übungen, Beispiel 1 | A.43.10
Ein paar Beispiele von Funktionsuntersuchungen von gebrochen-rationalen Funktionen. (Wir betrachten Nullstellen, Ableitungen, Extrem- und Wendepunkte, alle Asymptoten und fertigen eine Skizze.) In den ersten beiden Funktionen gibt es Polstellen ohne Vorzeichenwechsel (=ohne VZW).
Gebrochen-rationale Funktionen: So leitet man eine Bruchfunktion ab, Beispiel 2 | A.43.02
Die Ableitung eines Bruchs geht mit der sogenannten „Quotientenregel“. Der Zähler (oben) wird „u“ genannt, der Nenner (unten) wird „v“ genannt. Die Formel für Ableitung lautet: f'(x)=(u'·v-u·v')/(v²).
Gebrochen-rationale Funktionen / Bruchfunktion: Nullstellen berechnen | A.43.01
Die Schnittpunkte einer Bruchfunktion mit der x-Achse bestimmt man, in dem man die Funktion mit dem Nenner multipliziert. Damit ist man den Bruch los und führt die Berechnung der Nullstellen auf die eine viel einfachere ganzrationale Funktion zurück.