Quadrieren - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen
Wurzelfunktion: Wurzelgleichungen lösen | A.45.05
Wurzelgleichungen löst man zuerst nach der Wurzel auf. Danach sollte man quadrieren man und sollte nach x auflösen können um so die Nullstelle zu erhalten. So weit die Theorie. Tja, die ein oder andere Gleichung ist vielleicht etwas komplizierter (nur minimal komplizierter).
Wurzelfunktion: Wurzelgleichungen lösen, Beispiel 2 | A.45.05
Wurzelgleichungen löst man zuerst nach der Wurzel auf. Danach sollte man quadrieren man und sollte nach x auflösen können um so die Nullstelle zu erhalten. So weit die Theorie. Tja, die ein oder andere Gleichung ist vielleicht etwas komplizierter (nur minimal komplizierter).
Wurzelfunktion: Wurzelgleichungen lösen, Beispiel 1 | A.45.05
Wurzelgleichungen löst man zuerst nach der Wurzel auf. Danach sollte man quadrieren man und sollte nach x auflösen können um so die Nullstelle zu erhalten. So weit die Theorie. Tja, die ein oder andere Gleichung ist vielleicht etwas komplizierter (nur minimal komplizierter).
Wurzelfunktion: Wurzelgleichungen lösen, Beispiel 4 | A.45.05
Wurzelgleichungen löst man zuerst nach der Wurzel auf. Danach sollte man quadrieren man und sollte nach x auflösen können um so die Nullstelle zu erhalten. So weit die Theorie. Tja, die ein oder andere Gleichung ist vielleicht etwas komplizierter (nur minimal komplizierter).
Wurzelfunktion: Wurzelgleichungen lösen, Beispiel 3 | A.45.05
Wurzelgleichungen löst man zuerst nach der Wurzel auf. Danach sollte man quadrieren man und sollte nach x auflösen können um so die Nullstelle zu erhalten. So weit die Theorie. Tja, die ein oder andere Gleichung ist vielleicht etwas komplizierter (nur minimal komplizierter).
Komplexe Zahlen potenzieren, Beispiel 4 | A.54.05
Will man komplexe Zahlen quadrieren, so ist es völlig egal, welche Form die Zahl hat. (In kartesischer Form wendet man binomische Formel an, in Polarform: siehe nächsten Sätze). Zahlen in Polarform sind super-einfach zu potenzieren. Man wendet einfach eine Potenzregel an und ist fertig. Grafisch geht Potenzieren so: Annahme die neue Hochzahl ist n. Der Betrag der neuen ...
Quelle
Systematik
- Mathematik (16)
- Mathematisch-Naturwissenschaftliche Fächer (16)
- Biologie, Chemie, Physik (2)
- Fächer der Beruflichen Bildung (2)
- Überblick, Allgemeines (2)
- Mathematik und Physik (2)
- Fächerübergreifende Themen (2)
Schlagwörter
- Analysis (12)
- E-Learning (12)
- Video (12)
- Quadrieren (7)
- Wurzel (7)
- Gleichung (Mathematik) (7)
- Mathematik (6)