Quadratische Form - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen
Quadratische Gleichungen mit der Form ax²+c=0 lösen | G.04.05
Eine quadratische Gleichung, in welcher das x fehlt heißt reinquadratisch. (Wir reden hier also von einer Gleichung der Form ax²+c=0). Diese Gleichung löst man einfach nach x auf. Man bringt also das c rüber, teilt durch a und zieht die Wurzel. (nicht vergessen: es gibt eine Plus-Lösung UND eine Minus-Lösung!)
Quadratische Gleichungen mit der Form ax²+c=0 lösen, Beispiel 1 | G.04.05
Eine quadratische Gleichung, in welcher das x fehlt heißt reinquadratisch. (Wir reden hier also von einer Gleichung der Form ax²+c=0). Diese Gleichung löst man einfach nach x auf. Man bringt also das c rüber, teilt durch a und zieht die Wurzel. (nicht vergessen: es gibt eine Plus-Lösung UND eine Minus-Lösung!)
Quadratische Gleichungen mit der Form ax²+c=0 lösen, Beispiel 3 | G.04.05
Eine quadratische Gleichung, in welcher das x fehlt heißt reinquadratisch. (Wir reden hier also von einer Gleichung der Form ax²+c=0). Diese Gleichung löst man einfach nach x auf. Man bringt also das c rüber, teilt durch a und zieht die Wurzel. (nicht vergessen: es gibt eine Plus-Lösung UND eine Minus-Lösung!)
Quadratische Gleichungen mit der Form ax²+c=0 lösen, Beispiel 2 | G.04.05
Eine quadratische Gleichung, in welcher das x fehlt heißt reinquadratisch. (Wir reden hier also von einer Gleichung der Form ax²+c=0). Diese Gleichung löst man einfach nach x auf. Man bringt also das c rüber, teilt durch a und zieht die Wurzel. (nicht vergessen: es gibt eine Plus-Lösung UND eine Minus-Lösung!)
Mathematik-digital/Einführung in quadratische Funktionen
Die Einführung in das Thema Quadratische Funktionen erfolgt am Beispiel des Bremsweges eines Autos, genauer gesagt anhand des Zusammenhangs zwischen der Geschwindigkeit eines Autos und der Länge seines Bremsweges. Nachdem auf diese Weise der Begriff der reinquadratischen Funktion erarbeitet worden ist, wird die allgemeine Form vor allem durch Experimentieren am Graphen ...
Parabel: so kann man Parabeln berechnen | A.04
Unter einer Parabel versteht man üblicherweise eine quadratische Parabel, eine Funktion der Form: y=Zahl*x²+Zahl*x+Zahl bzw. y=ax²+bx+c. Parabeln sind neben den Geraden die einfachsten Funktionen und daher recht wichtig. Viele Grundlagenrechnungen von Funktionen werden hier erstmalig angewendet. (Zeichnen von Funktionen, Berechnung von Nullstellen, Verschieben, ). Beginnt ...
Mit p-q Formel quadratische Gleichungen lösen, Beispiel 3 | G.04.02
Die gängigste Art in Europa, quadratische Gleichungen zu lösen, ist die Mitternachtsformel, welche in zwei Varianten auftaucht. Eine der Varianten ist die p-q-Formel. Um die p-q-Formel anzuwenden, sollte die Gleichung in der Form vorliegen: x²+px+q=0. Auf der rechten Seite der Gleichung muss also Null stehen, vor dem x² darf nichts stehen (also eine 1). Steht ...
Quelle
- Bildungsmediathek NRW (17)
- Lehrer-Online (3)
- Deutscher Bildungsserver (3)
- Landesbildungsserver Berlin-Brandenburg (2)
- Elixier Community (1)
- Select Hessen (1)
Systematik
- Mathematik (27)
- Mathematisch-Naturwissenschaftliche Fächer (26)
- Zuordnungen, Funktionen (4)
- Grundschule (4)
- Quadratische Funktionen (3)
- Fächerübergreifende Themen (3)
- Zahlen (3)
Schlagwörter
- Quadratische Gleichung (14)
- Mitternachtsformel (12)
- Quadratische Funktion (6)
- Mathematik (5)
- A-B-C-Formel (4)
- Reinquadratisch (4)
- P-Q-Formel (4)
Bildungsebene
Lernressourcentyp
- Arbeitsmaterial (2)
- Kurs (1)
- Bild/grafik (1)
- Simulation (1)
- Unterrichtsplanung (1)
- Arbeitsblatt (1)
- Lernkontrolle (1)