Punkte im Koordinatensystem - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen
Grundlagen Vektorgeometrie: Punkte einzeichnen und ablesen im Koordinatensystem | V01.01
Im Allgemeinen kann man aus einem dreiachsigen Koordinatensystem keine Punkte ablesen. Es gibt ein paar Ausnahmen, die wir hier behandeln. Desweiteren werden wir auch noch Punkte, Geraden, Pyramiden Quader und Anderes einzeichnen.
Grundlagen Vektorgeometrie: Punkte einzeichnen und ablesen im Koordinatensystem, Beispiel 3 | V01.01
Im Allgemeinen kann man aus einem dreiachsigen Koordinatensystem keine Punkte ablesen. Es gibt ein paar Ausnahmen, die wir hier behandeln. Desweiteren werden wir auch noch Punkte, Geraden, Pyramiden Quader und Anderes einzeichnen.
Grundlagen Vektorgeometrie: Punkte einzeichnen und ablesen im Koordinatensystem, Beispiel 1 | V01.01
Im Allgemeinen kann man aus einem dreiachsigen Koordinatensystem keine Punkte ablesen. Es gibt ein paar Ausnahmen, die wir hier behandeln. Desweiteren werden wir auch noch Punkte, Geraden, Pyramiden Quader und Anderes einzeichnen.
Grundlagen Vektorgeometrie: Punkte einzeichnen und ablesen im Koordinatensystem, Beispiel 2 | V01.01
Im Allgemeinen kann man aus einem dreiachsigen Koordinatensystem keine Punkte ablesen. Es gibt ein paar Ausnahmen, die wir hier behandeln. Desweiteren werden wir auch noch Punkte, Geraden, Pyramiden Quader und Anderes einzeichnen.
Punkte und wie man mit ihnen rechnet | A.01
Egal, ob man Punkte, Geraden, Funktionen oder was auch immer im Koordinatensystem gegeben hat. Wenn man die irgendwie abändern will (spiegeln, verschieben, Abstände berechnen will, ) führt man das ganz häufig auf Theorien zurück, die man von Koordinaten von Punkten kennt. In diesem Kapitel berechnen wir Mittelpunkte, Steigungen, Abstände zwischen zwei Punkten und ...
Mittelpunkt berechnen, Beispiel 3 | A.01.01
Den Mittelpunkt von zwei gegebenen Punkten berechnet man im Koordinatensystem sehr einfach. Man bestimmt die Mitte der x-Werte und die Mitte der y-Werte. (Man bestimmt z.B. die Mitte von zwei x-Werten, indem man die beiden x-Werte zusammenzählt und das Ergebnis durch 2 teilt).
Mittelpunkt berechnen, Beispiel 1 | A.01.01
Den Mittelpunkt von zwei gegebenen Punkten berechnet man im Koordinatensystem sehr einfach. Man bestimmt die Mitte der x-Werte und die Mitte der y-Werte. (Man bestimmt z.B. die Mitte von zwei x-Werten, indem man die beiden x-Werte zusammenzählt und das Ergebnis durch 2 teilt).
Quelle
- Bildungsmediathek NRW (32)
- Lehrer-Online (2)
- Select Hessen (2)
- Mauswiesel Hessen (1)
- Deutscher Bildungsserver (1)
- Bildungsserver Hessen (1)
Systematik
- Mathematik (39)
- Mathematisch-Naturwissenschaftliche Fächer (37)
- Geometrie (3)
- Analytische Geometrie (3)
- Grundschule (3)
- Punkte im Koordinatensystem (2)
- Fachdidaktik (2)
Schlagwörter
- Koordinatensystem (32)
- Koordinate (28)
- E-Learning (27)
- Video (27)
- Punkt (17)
- Gerade (Mathematik) (13)
- Punkte (10)