Punkte - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

Vektorgeometrie Grundlagen: Punkte, Geraden, Ebenen und mehr | V.01
Allgemeine Grundlagen der Vektorgeometrie rund um Punkte, Geraden und Ebenen. Geraden und Ebenen aufstellen, Ebenenformen umwandeln, etc..
Marienkäfer - Bedeutung der Punkte
Schülerinnen und Schüler erfahren hier in dem Kurzvideo, was die Punkte der  Marienkäfern bedeuten.
Finde die Punkte- Kartenpaare!
Schülerinnen und Schüler haben hier die Möglichkeit ihr Gedächnis zu trainieren, indem sie die Punkte-Kartenpaare durch Aufdecken finden. Die Gesamtanzahl der Karten kann selbst bestimmt werden.
Abstand zweier Punkte berechnen, Beispiel 1 | V.03.01
Der absolut wichtigste Abstand in der Vektorgeometrie ist der Abstand zweier Punkte. Man berechnet diesen entweder über die Entfernungsformel oder in dem man den Verbindungsvektor beider Punkte aufstellt und davon dann den Betrag errechnet. (Der Abstand der Punkte ist die Vektorlänge.)
Abstand zweier Punkte berechnen, Beispiel 3 | V.03.01
Der absolut wichtigste Abstand in der Vektorgeometrie ist der Abstand zweier Punkte. Man berechnet diesen entweder über die Entfernungsformel oder in dem man den Verbindungsvektor beider Punkte aufstellt und davon dann den Betrag errechnet. (Der Abstand der Punkte ist die Vektorlänge.)
Punkte und wie man mit ihnen rechnet | A.01
Egal, ob man Punkte, Geraden, Funktionen oder was auch immer im Koordinatensystem gegeben hat. Wenn man die irgendwie abändern will (spiegeln, verschieben, Abstände berechnen will, ) führt man das ganz häufig auf Theorien zurück, die man von Koordinaten von Punkten kennt. In diesem Kapitel berechnen wir Mittelpunkte, Steigungen, Abstände zwischen zwei Punkten und ...
Abstand zweier Punkte berechnen | V.03.01
Der absolut wichtigste Abstand in der Vektorgeometrie ist der Abstand zweier Punkte. Man berechnet diesen entweder über die Entfernungsformel oder in dem man den Verbindungsvektor beider Punkte aufstellt und davon dann den Betrag errechnet. (Der Abstand der Punkte ist die Vektorlänge.)
Abstand zweier Punkte berechnen, Beispiel 2 | V.03.01
Der absolut wichtigste Abstand in der Vektorgeometrie ist der Abstand zweier Punkte. Man berechnet diesen entweder über die Entfernungsformel oder in dem man den Verbindungsvektor beider Punkte aufstellt und davon dann den Betrag errechnet. (Der Abstand der Punkte ist die Vektorlänge.)
Grundlagen Vektorgeometrie: Punkte einzeichnen und ablesen im Koordinatensystem, Beispiel 2 | V01.01
Im Allgemeinen kann man aus einem dreiachsigen Koordinatensystem keine Punkte ablesen. Es gibt ein paar Ausnahmen, die wir hier behandeln. Desweiteren werden wir auch noch Punkte, Geraden, Pyramiden Quader und Anderes einzeichnen.
Grundlagen Vektorgeometrie: Punkte einzeichnen und ablesen im Koordinatensystem, Beispiel 3 | V01.01
Im Allgemeinen kann man aus einem dreiachsigen Koordinatensystem keine Punkte ablesen. Es gibt ein paar Ausnahmen, die wir hier behandeln. Desweiteren werden wir auch noch Punkte, Geraden, Pyramiden Quader und Anderes einzeichnen.