Punkt an Ebene - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

Punkt an Ebene spiegeln, Beispiel 1 | V.04.04
Will man Punkt an Ebene spiegeln, braucht man den Lotfußpunkt. (Man stellt dafür eine Lotgerade auf und schneidet diese mit der Ebene.) Nun spiegelt man den Punkt am Lotfußpunkt und erhält den gewünschten Spiegelpunkt.
Punkt an Ebene spiegeln, Beispiel 2 | V.04.04
Will man Punkt an Ebene spiegeln, braucht man den Lotfußpunkt. (Man stellt dafür eine Lotgerade auf und schneidet diese mit der Ebene.) Nun spiegelt man den Punkt am Lotfußpunkt und erhält den gewünschten Spiegelpunkt.
Punkt an Ebene spiegeln | V.04.04
Will man Punkt an Ebene spiegeln, braucht man den Lotfußpunkt. (Man stellt dafür eine Lotgerade auf und schneidet diese mit der Ebene.) Nun spiegelt man den Punkt am Lotfußpunkt und erhält den gewünschten Spiegelpunkt.
Punkt an Ebene spiegeln, Beispiel 3 | V.04.04
Will man Punkt an Ebene spiegeln, braucht man den Lotfußpunkt. (Man stellt dafür eine Lotgerade auf und schneidet diese mit der Ebene.) Nun spiegelt man den Punkt am Lotfußpunkt und erhält den gewünschten Spiegelpunkt.
Spiegeln: Punkt spiegeln, Gerade spiegeln, Ebene spiegeln | V.04
Man kann alles Mögliche spiegeln. Alles wird jedoch auf die drei Basisfälle zurückgeführt: Punkt an Punkt spiegeln, Punkt an Gerade spiegeln und Punkt an Ebene spiegeln und diese wiederum führt man auf Spiegeln Punkt an Punkt zurück. Spiegeln ist nicht so schwer.
Abstand Punkt Ebene berechnen über Lotgerade, Beispiel 1 | V.03.06
Einen Abstand Punkt-Ebene kann man über mehrere Wege berechnen. Eine der Möglichkeiten ist der Weg über die Lotgerade. Für eine solche senkrechte Gerade verwendet man als Richtungsvektor den Normalenvektor der Ebene. Den Punkt verwendet man als Stützvektor der Hilfsgerade. Diese Methode eignet sich gut, wenn man den Lotfußpunkt braucht (Und den braucht man ...
Abstand Punkt Ebene berechnen über Hessesche Normalform HNF, Beispiel 1 | V.03.07
Die schnellste Möglichkeit den Abstand Punkt-Ebene zu berechnen, geht über die Hesse-Normal-Form (HNF). Man stellt die Hesse Normal Form der Ebene auf, setzt den Punkt ein und hat auch schon den gesuchten Abstand. Leider erhält man über diese Methode den Lotfußpunkt nicht.
Abstand Punkt Ebene berechnen über Hessesche Normalform HNF | V.03.07
Die schnellste Möglichkeit den Abstand Punkt-Ebene zu berechnen, geht über die Hesse-Normal-Form (HNF). Man stellt die Hesse Normal Form der Ebene auf, setzt den Punkt ein und hat auch schon den gesuchten Abstand. Leider erhält man über diese Methode den Lotfußpunkt nicht.
Abstand Punkt Ebene berechnen über Lotgerade, Beispiel 3 | V.03.06
Einen Abstand Punkt-Ebene kann man über mehrere Wege berechnen. Eine der Möglichkeiten ist der Weg über die Lotgerade. Für eine solche senkrechte Gerade verwendet man als Richtungsvektor den Normalenvektor der Ebene. Den Punkt verwendet man als Stützvektor der Hilfsgerade. Diese Methode eignet sich gut, wenn man den Lotfußpunkt braucht (Und den braucht man ...
Abstand Punkt Ebene berechnen über Lotgerade, Beispiel 2 | V.03.06
Einen Abstand Punkt-Ebene kann man über mehrere Wege berechnen. Eine der Möglichkeiten ist der Weg über die Lotgerade. Für eine solche senkrechte Gerade verwendet man als Richtungsvektor den Normalenvektor der Ebene. Den Punkt verwendet man als Stützvektor der Hilfsgerade. Diese Methode eignet sich gut, wenn man den Lotfußpunkt braucht (Und den braucht man ...