Primfaktoren - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

Größter gemeinsamer Teiler ggT und wie man ihn bestimmt, Beispiel 2 | B.10.03
Um den größten gemeinsamen Teiler (ggT) von zwei oder mehreren Zahlen zu bestimmen, zerlegt man alle Zahlen in Primfaktoren. Man verwendet alle gemeinsamen Primfaktoren in der kleinsten Potenz in der sie vorkommen. Das Produkt davon ist der ggT.
Primfaktorzerlegung, Beispiel 2 | B.10.02
Primfaktoren sind Zahlen, die man nicht mehr zerlegen kann (also Primzahlen), z.B. 2, 3, 5, 7, 11, Für diverse Theorien der Zahlentheorie muss man Zahlen in Primfaktoren zerlegen (z.B. zur Berechnung von ggT, kgV, ). Wie man dafür am besten vorgeht, zeigen wir hier.
Größter gemeinsamer Teiler ggT und wie man ihn bestimmt, Beispiel 1 | B.10.03
Um den größten gemeinsamen Teiler (ggT) von zwei oder mehreren Zahlen zu bestimmen, zerlegt man alle Zahlen in Primfaktoren. Man verwendet alle gemeinsamen Primfaktoren in der kleinsten Potenz in der sie vorkommen. Das Produkt davon ist der ggT.
Primfaktorzerlegung, Beispiel 1 | B.10.02
Primfaktoren sind Zahlen, die man nicht mehr zerlegen kann (also Primzahlen), z.B. 2, 3, 5, 7, 11, Für diverse Theorien der Zahlentheorie muss man Zahlen in Primfaktoren zerlegen (z.B. zur Berechnung von ggT, kgV, ). Wie man dafür am besten vorgeht, zeigen wir hier.
Größter gemeinsamer Teiler ggT und wie man ihn bestimmt | B.10.03
Um den größten gemeinsamen Teiler (ggT) von zwei oder mehreren Zahlen zu bestimmen, zerlegt man alle Zahlen in Primfaktoren. Man verwendet alle gemeinsamen Primfaktoren in der kleinsten Potenz in der sie vorkommen. Das Produkt davon ist der ggT.
Kleinstes gemeinsames Vielfaches kgV und wie man es bestimmt, Beispiel 2 | B.10.04
Um das kleinste gemeinsame Vielfache (kgV) von zwei oder mehreren Zahlen zu bestimmen, zerlegt man alle Zahlen in Primfaktoren. Man verwendet alle gemeinsamen oder nicht gemeinsamen Primfaktoren zur höchsten Potenz, in der sie vorkommen. Das Produkt davon ist das kgV.
Größter gemeinsamer Teiler ggT und wie man ihn bestimmt, Beispiel 3 | B.10.03
Um den größten gemeinsamen Teiler (ggT) von zwei oder mehreren Zahlen zu bestimmen, zerlegt man alle Zahlen in Primfaktoren. Man verwendet alle gemeinsamen Primfaktoren in der kleinsten Potenz in der sie vorkommen. Das Produkt davon ist der ggT.
Primfaktorzerlegung, Beispiel 3 | B.10.02
Primfaktoren sind Zahlen, die man nicht mehr zerlegen kann (also Primzahlen), z.B. 2, 3, 5, 7, 11, Für diverse Theorien der Zahlentheorie muss man Zahlen in Primfaktoren zerlegen (z.B. zur Berechnung von ggT, kgV, ). Wie man dafür am besten vorgeht, zeigen wir hier.
Kleinstes gemeinsames Vielfaches kgV und wie man es bestimmt | B.10.04
Um das kleinste gemeinsame Vielfache (kgV) von zwei oder mehreren Zahlen zu bestimmen, zerlegt man alle Zahlen in Primfaktoren. Man verwendet alle gemeinsamen oder nicht gemeinsamen Primfaktoren zur höchsten Potenz, in der sie vorkommen. Das Produkt davon ist das kgV.
Kleinstes gemeinsames Vielfaches kgV und wie man es bestimmt, Beispiel 3 | B.10.04
Um das kleinste gemeinsame Vielfache (kgV) von zwei oder mehreren Zahlen zu bestimmen, zerlegt man alle Zahlen in Primfaktoren. Man verwendet alle gemeinsamen oder nicht gemeinsamen Primfaktoren zur höchsten Potenz, in der sie vorkommen. Das Produkt davon ist das kgV.