Potenzgesetz - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

Potenzen mit gleicher Basis, Beispiel 2 | B.03.01
Werden zwei Potenzen mit gleicher Basis multipliziert, so schreibt man die Basis hin und addiert die Hochzahlen. a^x * a^y = a^(x+y). Diese und ähnliche Regeln verwendet wir in diesem Kapitel, um diverse Terme mit gleichen Basen und verschiedenen Exponenten zu vereinfachen bzw. zusammenfassen.
So werden zwei Potenzen mit gleicher Hochzahl und unterschiedlicher Basis multipliziert, Beispiel 3
Werden zwei Potenzen mit gleicher Hochzahl und unterschiedlicher Basis multipliziert, so multipliziert man die Basen und schreibt man den Exponent einfach hin. Die zugehörige Potenzregel: a^x * b^x = (a*b)^x.
Potenz der Potenzen: eine Potenz nochmal potenzieren, Beispiel 3 | B.03.04
Will man eine Potenz nochmal potenzieren (man hat also eine doppelte Potenz), so werden die beiden Hochzahlen miteinander multipliziert. Die Regel: (a^x)^y = a^(x*y). Weil das so toll ist, rechnen wir ein paar Beispiele dazu.
Potenz der Potenzen: eine Potenz nochmal potenzieren, Beispiel 2 | B.03.04
Will man eine Potenz nochmal potenzieren (man hat also eine doppelte Potenz), so werden die beiden Hochzahlen miteinander multipliziert. Die Regel: (a^x)^y = a^(x*y). Weil das so toll ist, rechnen wir ein paar Beispiele dazu.
So werden zwei Potenzen mit gleicher Hochzahl und unterschiedlicher Basis multipliziert, Beispiel 1
Werden zwei Potenzen mit gleicher Hochzahl und unterschiedlicher Basis multipliziert, so multipliziert man die Basen und schreibt man den Exponent einfach hin. Die zugehörige Potenzregel: a^x * b^x = (a*b)^x.
Potenzen mit gleicher Basis, Beispiel 5 | B.03.01
Werden zwei Potenzen mit gleicher Basis multipliziert, so schreibt man die Basis hin und addiert die Hochzahlen. a^x * a^y = a^(x+y). Diese und ähnliche Regeln verwendet wir in diesem Kapitel, um diverse Terme mit gleichen Basen und verschiedenen Exponenten zu vereinfachen bzw. zusammenfassen.
Potenzen mit gleicher Basis, Beispiel 3 | B.03.01
Werden zwei Potenzen mit gleicher Basis multipliziert, so schreibt man die Basis hin und addiert die Hochzahlen. a^x * a^y = a^(x+y). Diese und ähnliche Regeln verwendet wir in diesem Kapitel, um diverse Terme mit gleichen Basen und verschiedenen Exponenten zu vereinfachen bzw. zusammenfassen.
Potenzen mit gleicher Basis | B.03.01
Werden zwei Potenzen mit gleicher Basis multipliziert, so schreibt man die Basis hin und addiert die Hochzahlen. a^x * a^y = a^(x+y). Diese und ähnliche Regeln verwendet wir in diesem Kapitel, um diverse Terme mit gleichen Basen und verschiedenen Exponenten zu vereinfachen bzw. zusammenfassen.
So werden zwei Potenzen mit gleicher Hochzahl und unterschiedlicher Basis multipliziert | B.03.03
Werden zwei Potenzen mit gleicher Hochzahl und unterschiedlicher Basis multipliziert, so multipliziert man die Basen und schreibt man den Exponent einfach hin. Die zugehörige Potenzregel: a^x * b^x = (a*b)^x.
Potenzen mit gleicher Basis, Beispiel 1 | B.03.01
Werden zwei Potenzen mit gleicher Basis multipliziert, so schreibt man die Basis hin und addiert die Hochzahlen. a^x * a^y = a^(x+y). Diese und ähnliche Regeln verwendet wir in diesem Kapitel, um diverse Terme mit gleichen Basen und verschiedenen Exponenten zu vereinfachen bzw. zusammenfassen.