Potenz, potenzgesetze - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen
Potenz der Potenzen: eine Potenz nochmal potenzieren, Beispiel 1 | B.03.04
Will man eine Potenz nochmal potenzieren (man hat also eine doppelte Potenz), so werden die beiden Hochzahlen miteinander multipliziert. Die Regel: (a^x)^y = a^(x*y). Weil das so toll ist, rechnen wir ein paar Beispiele dazu.
Potenz der Potenzen: eine Potenz nochmal potenzieren, Beispiel 2 | B.03.04
Will man eine Potenz nochmal potenzieren (man hat also eine doppelte Potenz), so werden die beiden Hochzahlen miteinander multipliziert. Die Regel: (a^x)^y = a^(x*y). Weil das so toll ist, rechnen wir ein paar Beispiele dazu.
Potenz der Potenzen: eine Potenz nochmal potenzieren, Beispiel 3 | B.03.04
Will man eine Potenz nochmal potenzieren (man hat also eine doppelte Potenz), so werden die beiden Hochzahlen miteinander multipliziert. Die Regel: (a^x)^y = a^(x*y). Weil das so toll ist, rechnen wir ein paar Beispiele dazu.
Potenzgesetze und Potenzregeln: was ist das überhaupt? Wie rechnet man damit richtig? | B.03
Bei Potenzproblemen in Mathe hilft leider auch kein Viagra. Sie müssen sich leider durch alle Potenzregeln und Potenzgesetze kämpfen. Davon hat´s zum Glück nur eine Hand voll, die wir in den Unterkapiteln betrachten. Vorab ein paar Begriffe: Betrachten wir eine Potenz der Form: a^n: Die untere Zahl a heißt Basis, andere Begriffe sind eigentlich nicht ...
Potenzen mit gleicher Basis, Beispiel 5 | B.03.01
Werden zwei Potenzen mit gleicher Basis multipliziert, so schreibt man die Basis hin und addiert die Hochzahlen. a^x * a^y = a^(x+y). Diese und ähnliche Regeln verwendet wir in diesem Kapitel, um diverse Terme mit gleichen Basen und verschiedenen Exponenten zu vereinfachen bzw. zusammenfassen.
Potenzen mit gleicher Basis | B.03.01
Werden zwei Potenzen mit gleicher Basis multipliziert, so schreibt man die Basis hin und addiert die Hochzahlen. a^x * a^y = a^(x+y). Diese und ähnliche Regeln verwendet wir in diesem Kapitel, um diverse Terme mit gleichen Basen und verschiedenen Exponenten zu vereinfachen bzw. zusammenfassen.
So werden zwei Potenzen mit gleicher Hochzahl und unterschiedlicher Basis multipliziert, Beispiel 3
Werden zwei Potenzen mit gleicher Hochzahl und unterschiedlicher Basis multipliziert, so multipliziert man die Basen und schreibt man den Exponent einfach hin. Die zugehörige Potenzregel: a^x * b^x = (a*b)^x.
Quelle
Systematik
- Mathematik (26)
- Mathematisch-Naturwissenschaftliche Fächer (26)
- Potenz, Potenzgesetze (2)
- Potenzen und Wurzeln (2)
- Gleichungen, Ungleichungen, Lineare Gleichungssysteme (2)
- Variablen und Terme (2)
- Trigonometrische Berechnungen (1)