Polstelle - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen
Aus dem Schaubild einer gebrochen-rationalen Funktion die Funktionsgleichung erstellen, Beispiel 1
Man erkennt daran, dass eine Zeichnung zu einer gebrochen-rationalen Funktion gehört, dass die Zeichnung durch senkrechte Asymptoten geteilt ist. Am geschicktesten beginnt man mit den senkrechten Asymptoten (=Polstelle), welche den Nenner der Funktion festlegt. Oben, im Zähler, schreibt man einen Parameter. Hinter den Bruch schreibt man die schiefe oder waagerechte ...
Aus dem Schaubild einer gebrochen-rationalen Funktion die Funktionsgleichung erstellen | A.43.09
Man erkennt daran, dass eine Zeichnung zu einer gebrochen-rationalen Funktion gehört, dass die Zeichnung durch senkrechte Asymptoten geteilt ist. Am geschicktesten beginnt man mit den senkrechten Asymptoten (=Polstelle), welche den Nenner der Funktion festlegt. Oben, im Zähler, schreibt man einen Parameter. Hinter den Bruch schreibt man die schiefe oder waagerechte ...
Aus dem Schaubild einer gebrochen-rationalen Funktion die Funktionsgleichung erstellen, Beispiel 3
Man erkennt daran, dass eine Zeichnung zu einer gebrochen-rationalen Funktion gehört, dass die Zeichnung durch senkrechte Asymptoten geteilt ist. Am geschicktesten beginnt man mit den senkrechten Asymptoten (=Polstelle), welche den Nenner der Funktion festlegt. Oben, im Zähler, schreibt man einen Parameter. Hinter den Bruch schreibt man die schiefe oder waagerechte ...
Aus dem Schaubild einer gebrochen-rationalen Funktion die Funktionsgleichung erstellen, Beispiel 2
Man erkennt daran, dass eine Zeichnung zu einer gebrochen-rationalen Funktion gehört, dass die Zeichnung durch senkrechte Asymptoten geteilt ist. Am geschicktesten beginnt man mit den senkrechten Asymptoten (=Polstelle), welche den Nenner der Funktion festlegt. Oben, im Zähler, schreibt man einen Parameter. Hinter den Bruch schreibt man die schiefe oder waagerechte ...
Aus dem Schaubild einer Logarithmusfunktion die Funktionsgleichung erstellen, Beispiel 1 | A.44.08
Im Normalfall muss man nur Funktionen der Form f(x)=a·ln(bx+c) zeichnen. Das Argument setzt man Null, wobei man für x den Wert der Definitionslücke einsetzt. Nun nimmt man ein paar Punkte, setzt sie in die Funktion ein und bestimmt die Parameter a, b und c.
Quelle
Systematik
- Mathematik (35)
- Mathematisch-Naturwissenschaftliche Fächer (35)
- Analysis, Analytische Geometrie (2)
- Zuordnungen, Funktionen (1)
Schlagwörter
- Funktion (Mathematik) (34)
- Analysis (34)
- Video (34)
- E-Learning (34)
- Menge (Mathematik) (33)
- Definitionslücke (33)
- Polstelle (33)