Poisson - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

Poisson - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

Poisson-Verteilung Beispiel Stau-Problem, Teil 1 | W.19.01
Als Intervall betrachten wir einen Autobahnabschnitt von 100km und schauen mit welcher Häufigkeit kein, ein oder zwei Stau auftreten. Die durchschnittliche Stauhäufigkeit ist natürlich gegeben. Da die W.S. dafür recht klein ist, verwendet man die Poisson-Verteilung. Interessant wird’s natürlich auch, wenn wir die Länge des Streckenabschnittes ändern (also nicht immer ...
Poisson-Verteilung Beispiel Stau-Problem | W.19.01
Als Intervall betrachten wir einen Autobahnabschnitt von 100km und schauen mit welcher Häufigkeit kein, ein oder zwei Stau auftreten. Die durchschnittliche Stauhäufigkeit ist natürlich gegeben. Da die W.S. dafür recht klein ist, verwendet man die Poisson-Verteilung. Interessant wird’s natürlich auch, wenn wir die Länge des Streckenabschnittes ändern (also nicht immer ...
Poisson-Verteilung Beispiel Stau-Problem, Teil 2 | W.19.01
Als Intervall betrachten wir einen Autobahnabschnitt von 100km und schauen mit welcher Häufigkeit kein, ein oder zwei Stau auftreten. Die durchschnittliche Stauhäufigkeit ist natürlich gegeben. Da die W.S. dafür recht klein ist, verwendet man die Poisson-Verteilung. Interessant wird’s natürlich auch, wenn wir die Länge des Streckenabschnittes ändern (also nicht immer ...
Poisson-Verteilung Beispiel Stau-Problem, Teil 3 | W.19.01
Als Intervall betrachten wir einen Autobahnabschnitt von 100km und schauen mit welcher Häufigkeit kein, ein oder zwei Stau auftreten. Die durchschnittliche Stauhäufigkeit ist natürlich gegeben. Da die W.S. dafür recht klein ist, verwendet man die Poisson-Verteilung. Interessant wird’s natürlich auch, wenn wir die Länge des Streckenabschnittes ändern (also nicht immer ...
Poission-Verteilung
Mit über 150 Artikeln und über 100 interaktiven Übungen gehört MatheGuru.com zu den umfangreichsten Mathematikseiten im deutschsprachigen Internet. Zahlreiche farbige Abbildungen visualisieren die einzelnen Sachverhalte und helfen beim Verständnis. Wo und wie die Poisson-Verteilung angesetzt wird, erfahren Sie hier.
Poisson-Verteilung Beispiel Wartezeit-Problem, Teil 3 | W.19.02
Man verwendet die Poisson-Verteilung häufig, wenn man eine ZEIT-Abschnitt betrachtet. Ein Standardbeispiel davon ist, das Wartezeitproblem. Man weiß, wie häufig ein Bis im Durchschnitt auftaucht und möchte wissen, wie lange die Wartezeit bis zum nächsten Auftauchen des Busses ist. Eine unglaublich tolle Aufgabe, ohne die das Leben kaum lebenswert ist.
Poisson-Verteilung Beispiel Wartezeit-Problem | W.19.02
Man verwendet die Poisson-Verteilung häufig, wenn man eine ZEIT-Abschnitt betrachtet. Ein Standardbeispiel davon ist, das Wartezeitproblem. Man weiß, wie häufig ein Bis im Durchschnitt auftaucht und möchte wissen, wie lange die Wartezeit bis zum nächsten Auftauchen des Busses ist. Eine unglaublich tolle Aufgabe, ohne die das Leben kaum lebenswert ist.
Poisson-Verteilung Beispiel Wartezeit-Problem, Teil 2 | W.19.02
Man verwendet die Poisson-Verteilung häufig, wenn man eine ZEIT-Abschnitt betrachtet. Ein Standardbeispiel davon ist, das Wartezeitproblem. Man weiß, wie häufig ein Bis im Durchschnitt auftaucht und möchte wissen, wie lange die Wartezeit bis zum nächsten Auftauchen des Busses ist. Eine unglaublich tolle Aufgabe, ohne die das Leben kaum lebenswert ist.
Poisson-Verteilung Beispiel Wartezeit-Problem, Teil 1 | W.19.02
Man verwendet die Poisson-Verteilung häufig, wenn man eine ZEIT-Abschnitt betrachtet. Ein Standardbeispiel davon ist, das Wartezeitproblem. Man weiß, wie häufig ein Bis im Durchschnitt auftaucht und möchte wissen, wie lange die Wartezeit bis zum nächsten Auftauchen des Busses ist. Eine unglaublich tolle Aufgabe, ohne die das Leben kaum lebenswert ist.
Poisson-Verteilung Beispiel Wartezeit-Problem, Teil 4 | W.19.02
Man verwendet die Poisson-Verteilung häufig, wenn man eine ZEIT-Abschnitt betrachtet. Ein Standardbeispiel davon ist, das Wartezeitproblem. Man weiß, wie häufig ein Bis im Durchschnitt auftaucht und möchte wissen, wie lange die Wartezeit bis zum nächsten Auftauchen des Busses ist. Eine unglaublich tolle Aufgabe, ohne die das Leben kaum lebenswert ist.