Periode - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen
Periode von trigonometrischen Funktionen berechnen, Beispiel 2 | A.42.01
Normalerweise wiederholen sich trigonometrische Funktionen innerhalb einer Periode. Die Periode einer Sinus- oder Kosinus-Funktion liegt bei 2*Pi (Pi=3,1415...), die der Tangens-Funktion bei Pi. Allgemein hat eine Funktion der Form f(x)=a*sin(b(x-c))+d oder g(x)=a*cos(b(x-c))+d die Periode von Per=2*Pi/b. Bei komplizierteren Funktionen kann die Periode teilweise nicht mehr so ...
Periode von trigonometrischen Funktionen berechnen, Beispiel 3 | A.42.01
Normalerweise wiederholen sich trigonometrische Funktionen innerhalb einer Periode. Die Periode einer Sinus- oder Kosinus-Funktion liegt bei 2*Pi (Pi=3,1415...), die der Tangens-Funktion bei Pi. Allgemein hat eine Funktion der Form f(x)=a*sin(b(x-c))+d oder g(x)=a*cos(b(x-c))+d die Periode von Per=2*Pi/b. Bei komplizierteren Funktionen kann die Periode teilweise nicht mehr so ...
Periode von trigonometrischen Funktionen berechnen, Beispiel 1 | A.42.01
Normalerweise wiederholen sich trigonometrische Funktionen innerhalb einer Periode. Die Periode einer Sinus- oder Kosinus-Funktion liegt bei 2*Pi (Pi=3,1415...), die der Tangens-Funktion bei Pi. Allgemein hat eine Funktion der Form f(x)=a*sin(b(x-c))+d oder g(x)=a*cos(b(x-c))+d die Periode von Per=2*Pi/b. Bei komplizierteren Funktionen kann die Periode teilweise nicht mehr so ...
Periode von trigonometrischen Funktionen berechnen | A.42.01
Normalerweise wiederholen sich trigonometrische Funktionen innerhalb einer Periode. Die Periode einer Sinus- oder Kosinus-Funktion liegt bei 2*Pi (Pi=3,1415...), die der Tangens-Funktion bei Pi. Allgemein hat eine Funktion der Form f(x)=a*sin(b(x-c))+d oder g(x)=a*cos(b(x-c))+d die Periode von Per=2*Pi/b. Bei komplizierteren Funktionen kann die Periode teilweise nicht mehr so ...
Kopfrechnen: einen Bruch in eine Dezimalzahl umwandeln und umgekehrt, Beispiel 5 | B.08.09
Bei einer Bruchrechnung muss man oft den Bruch in eine Dezimalzahl umwandeln oder eine Dezimalzahl in einen Bruch. Einen Bruch in eine Dezimalzahl umzuwandeln ist schnell erklärt: man teilt den Zähler (=Oberes) durch den Nenner (=Unteres). Fertig. Will man eine Dezimalzahl in einen Bruch umwandeln, gibt es mehrere Fälle: Fall a) Die Nachkommastellen brechen irgendwann mal ...
Kopfrechnen: einen Bruch in eine Dezimalzahl umwandeln und umgekehrt, Beispiel 3 | B.08.09
Bei einer Bruchrechnung muss man oft den Bruch in eine Dezimalzahl umwandeln oder eine Dezimalzahl in einen Bruch. Einen Bruch in eine Dezimalzahl umzuwandeln ist schnell erklärt: man teilt den Zähler (=Oberes) durch den Nenner (=Unteres). Fertig. Will man eine Dezimalzahl in einen Bruch umwandeln, gibt es mehrere Fälle: Fall a) Die Nachkommastellen brechen irgendwann mal ...
Kopfrechnen: einen Bruch in eine Dezimalzahl umwandeln und umgekehrt | B.08.09
Bei einer Bruchrechnung muss man oft den Bruch in eine Dezimalzahl umwandeln oder eine Dezimalzahl in einen Bruch. Einen Bruch in eine Dezimalzahl umzuwandeln ist schnell erklärt: man teilt den Zähler (=Oberes) durch den Nenner (=Unteres). Fertig. Will man eine Dezimalzahl in einen Bruch umwandeln, gibt es mehrere Fälle: Fall a) Die Nachkommastellen brechen irgendwann mal ...
Kopfrechnen: einen Bruch in eine Dezimalzahl umwandeln und umgekehrt, Beispiel 4 | B.08.09
Bei einer Bruchrechnung muss man oft den Bruch in eine Dezimalzahl umwandeln oder eine Dezimalzahl in einen Bruch. Einen Bruch in eine Dezimalzahl umzuwandeln ist schnell erklärt: man teilt den Zähler (=Oberes) durch den Nenner (=Unteres). Fertig. Will man eine Dezimalzahl in einen Bruch umwandeln, gibt es mehrere Fälle: Fall a) Die Nachkommastellen brechen irgendwann mal ...
Kopfrechnen: einen Bruch in eine Dezimalzahl umwandeln und umgekehrt, Beispiel 2 | B.08.09
Bei einer Bruchrechnung muss man oft den Bruch in eine Dezimalzahl umwandeln oder eine Dezimalzahl in einen Bruch. Einen Bruch in eine Dezimalzahl umzuwandeln ist schnell erklärt: man teilt den Zähler (=Oberes) durch den Nenner (=Unteres). Fertig. Will man eine Dezimalzahl in einen Bruch umwandeln, gibt es mehrere Fälle: Fall a) Die Nachkommastellen brechen irgendwann mal ...
Quelle
- Bildungsmediathek NRW (36)
- Bildungsserver Hessen (6)
- Lehrer-Online (1)
- Landesbildungsserver Baden-Württemberg (1)
- Deutscher Bildungsserver (1)
Systematik
- Mathematisch-Naturwissenschaftliche Fächer (42)
- Mathematik (35)
- Biologie (6)
- Menschenkunde (5)
- Sexualerziehung (4)
- Fortpflanzung und Entwicklung (3)
- Menstruation (3)
Schlagwörter
- Periode (34)
- Analysis (28)
- E-Learning (28)
- Video (28)
- Trigonometrische Funktion (24)
- Tangens (24)
- Trigonometrie (24)
Bildungsebene
Lernressourcentyp
- Unterrichtsplanung (2)
- Arbeitsmaterial (2)
- Kurs (1)
- Nachschlagewerk (1)
- Karte (1)
- Simulation (1)
- Video/animation (1)