Parabeln - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen
Schnittpunkte zweier Parabeln berechnen, Beispiel 3 | A.04.12
Sucht man den Schnittpunkt von zwei Parabeln, muss man beide gleichsetzen. Fällt x² weg, kann man einfach nach dem verbliebenen x auflösen. Bleibt x² übrig, bringt man alles auf eine Seite und kann mit der Mitternachtsformel (p-q-Formel oder a-b-c-Formel) x berechnen. Man erhält keine/eine/zwei Lösungen für x. Setzt man x in eine der Parabeln ein, hat man ...
Schnittpunkte zweier Parabeln berechnen | A.04.12
Sucht man den Schnittpunkt von zwei Parabeln, muss man beide gleichsetzen. Fällt x² weg, kann man einfach nach dem verbliebenen x auflösen. Bleibt x² übrig, bringt man alles auf eine Seite und kann mit der Mitternachtsformel (p-q-Formel oder a-b-c-Formel) x berechnen. Man erhält keine/eine/zwei Lösungen für x. Setzt man x in eine der Parabeln ein, hat man ...
Schnittpunkte zweier Parabeln berechnen, Beispiel 1 | A.04.12
Sucht man den Schnittpunkt von zwei Parabeln, muss man beide gleichsetzen. Fällt x² weg, kann man einfach nach dem verbliebenen x auflösen. Bleibt x² übrig, bringt man alles auf eine Seite und kann mit der Mitternachtsformel (p-q-Formel oder a-b-c-Formel) x berechnen. Man erhält keine/eine/zwei Lösungen für x. Setzt man x in eine der Parabeln ein, hat man ...
Schnittpunkte zweier Parabeln berechnen, Beispiel 2 | A.04.12
Sucht man den Schnittpunkt von zwei Parabeln, muss man beide gleichsetzen. Fällt x² weg, kann man einfach nach dem verbliebenen x auflösen. Bleibt x² übrig, bringt man alles auf eine Seite und kann mit der Mitternachtsformel (p-q-Formel oder a-b-c-Formel) x berechnen. Man erhält keine/eine/zwei Lösungen für x. Setzt man x in eine der Parabeln ein, hat man ...
Analysis 1 | Geraden, Parabeln und wie man mit ihnen richtig rechnet
Wir beschäftigen uns an dieser Stelle mit den grundlegenden Themen rund ums Koordinatensystem: mit Punkte, Geraden und Parabeln. Wir bestimmen Abstände, Schnittpunkte, stellen Geraden- und Parabelgleichungen auf, zeichnen das ein- oder andere. Kurzum: Alles was man in Realschule und Mittelstufe zum Thema Analysis benötigt.
Parabel: so kann man Parabeln berechnen | A.04
Unter einer Parabel versteht man üblicherweise eine quadratische Parabel, eine Funktion der Form: y=Zahl*x²+Zahl*x+Zahl bzw. y=ax²+bx+c. Parabeln sind neben den Geraden die einfachsten Funktionen und daher recht wichtig. Viele Grundlagenrechnungen von Funktionen werden hier erstmalig angewendet. (Zeichnen von Funktionen, Berechnung von Nullstellen, Verschieben, ). Beginnt ...
Achsenabschnitt und Achsenschnittpunkte (Nullstellen) berechnen, Beispiel 3 | A.04.10
Eine der sehr wichtigen Berechnungen bei Parabeln sind die Achsenschnittpunkte. Der Schnittpunkt mit der y-Achse heiß auch y-Achsenabschnitt. Man erhält diesen, in dem man x=0 in die Parabel einsetzt. Die Schnittpunkte mit der x-Achse heißen auch Nullstellen. Man erhält diese, in dem man die Parabelgleichung Null setzt und dann (meist die Mitternachtsformel anwendet, ...
Quelle
- Bildungsmediathek NRW (342)
- Lehrer-Online (3)
- Deutscher Bildungsserver (3)
- Bildungsserver Hessen (3)
- Select Hessen (1)
Systematik
- Mathematik (348)
- Mathematisch-Naturwissenschaftliche Fächer (348)
- Quadratische Funktionen (5)
- Zuordnungen, Funktionen (5)
- Analysis, Analytische Geometrie (4)
- Fachdidaktik (3)
- Sprachen und Literatur (3)
Schlagwörter
- E-Learning (336)
- Video (336)
- Koordinate (173)
- Gerade (Mathematik) (169)
- Analysis (161)
- Gleichung (Mathematik) (149)
- Parabel (Mathematik) (135)
Bildungsebene
Lernressourcentyp
- Unterrichtsplanung (3)
- Arbeitsblatt (2)
- Interaktives Material (1)
- Simulation (1)
- Video/animation (1)
- Arbeitsmaterial (1)
- Lernkontrolle (1)