Orthogonalität - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen
Analysis 3 | tiefere Einblicke in die Analysis
Im Hauptkapitel 2 Analysis Tiefere Einblicke behandeln wir Themen, die zwar nicht direkt zur Funktionsanalyse gehören, jedoch völlig regelmäßig als Fragen in Prüfungen und Klausuren mit auftauchen. (Diverse Extremwertaufgaben, zwei Funktionen, die sich berühren oder orthogonal aufeinander stehen, stetig oder differenzierbar sind und viel, viel ...
Schnittwinkel zwischen Funktionen berechnen | A.22
Die gegenseitige Lage von zwei Funktionen lässt sich auf zwei wichtige Sonderfälle zurückführen: 1.beide Funktionen berühren sich, 2.beide Funktionen stehen senkrecht aufeinander (sich orthogonal schneiden). Ist beides nicht der Fall, so gibt es irgendeinen Schnittwinkel. (Es kann natürlich auch sein, dass sich beide Funktionen GAR nicht schneiden, das ist aber ...
Schnittwinkel zwischen Funktionen, die sich berühren bzw. schneiden, Beispiel 5 | A.22.01
Bei der gegenseitigen Lage von zwei Funktionen (gilt natürlich auch für Lage von Funktion und Gerade) sind zwei Fälle besonders interessant und tauchen häufig auf. In beiden Fällen kann man zwei Gleichungen aufstellen (so dass in der Aufgabe zwei Unbekannte auftauchen können). Erstens: beide Funktionen berühren sich. In diesem Fall sind y-Werte und Steigungen gleich. ...
Schnittwinkel zwischen Funktionen, die sich berühren bzw. schneiden | A.22.01
Bei der gegenseitigen Lage von zwei Funktionen (gilt natürlich auch für Lage von Funktion und Gerade) sind zwei Fälle besonders interessant und tauchen häufig auf. In beiden Fällen kann man zwei Gleichungen aufstellen (so dass in der Aufgabe zwei Unbekannte auftauchen können). Erstens: beide Funktionen berühren sich. In diesem Fall sind y-Werte und Steigungen gleich. ...
Schnittwinkel zwischen Funktionen, die sich berühren bzw. schneiden, Beispiel 2 | A.22.01
Bei der gegenseitigen Lage von zwei Funktionen (gilt natürlich auch für Lage von Funktion und Gerade) sind zwei Fälle besonders interessant und tauchen häufig auf. In beiden Fällen kann man zwei Gleichungen aufstellen (so dass in der Aufgabe zwei Unbekannte auftauchen können). Erstens: beide Funktionen berühren sich. In diesem Fall sind y-Werte und Steigungen gleich. ...
Schnittwinkel zwischen Funktionen, die sich berühren bzw. schneiden, Beispiel 6 | A.22.01
Bei der gegenseitigen Lage von zwei Funktionen (gilt natürlich auch für Lage von Funktion und Gerade) sind zwei Fälle besonders interessant und tauchen häufig auf. In beiden Fällen kann man zwei Gleichungen aufstellen (so dass in der Aufgabe zwei Unbekannte auftauchen können). Erstens: beide Funktionen berühren sich. In diesem Fall sind y-Werte und Steigungen gleich. ...
Schnittwinkel zwischen Funktionen, die sich berühren bzw. schneiden, Beispiel 4 | A.22.01
Bei der gegenseitigen Lage von zwei Funktionen (gilt natürlich auch für Lage von Funktion und Gerade) sind zwei Fälle besonders interessant und tauchen häufig auf. In beiden Fällen kann man zwei Gleichungen aufstellen (so dass in der Aufgabe zwei Unbekannte auftauchen können). Erstens: beide Funktionen berühren sich. In diesem Fall sind y-Werte und Steigungen gleich. ...
Quelle
Systematik
- Mathematik (12)
- Mathematisch-Naturwissenschaftliche Fächer (12)
- Analytische Geometrie (3)
- Vektoren (2)
- Skalarprodukt (1)
Schlagwörter
- Orthogonalität (9)
- Schnittwinkel (9)
- Funktion (Mathematik) (9)
- Geometrie (9)
- Analysis (9)
- Video (9)
- Gegenseitige Lage (8)