Menge (Mathematik) - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

Mächtigkeit (Mathematik)
Die Mächtigkeit einer Menge M mit endlich vielen Elementen ist die Anzahl ihrer Elemente. Man schreibt für die Mächtigkeit einer Menge M.
Menge (Mathematik)
Die gesamte heutige Mathematik wird üblicherweise auf den Axiomen der Mengenlehre aufgebaut und kann oft durch diese definiert werden. Sie findet Anwendung in vielen Teilgebieten der Mathematik, wie z.B. der Analysis, der Geometrie oder der Stochastik.
Funktion (Mathematik)
Eine Funktion ist eine Vorschrift, die jedem Element x aus einer Menge (der Definitionsmenge ) eindeutig ein Element y einer anderen Menge (der Wertemenge ) zuordnet.
Im Brennpunkt: Die Parabel als Ortslinie
Ein Kreis ist die Menge aller Punkte, die von einem Mittelpunkt gleich weit entfernt sind. Eine Parabel ist die Menge aller Punkte, die ... Eine solche Aussage gibt es tatsächlich auch für die Parabel. Sie zu entdecken und zu erforschen, dazu regt die hier vorgestellte Unterrichtseinheit an.
Wertebereich einer Funktion bestimmen, Beispiel 2 | A.11.06
Der Wertebereich oder die Wertemenge ist die Menge aller möglichen y-Werte, die eine Funktion annehmen kann. Man kann die Wertemenge bestimmen, wenn man das Schaubild der Funktion hat. Asymptoten, Hoch- und Tiefpunkte geben nun meistens an, welches die höchsten und tiefsten Punkte der Funktion sind.
Wertebereich einer Funktion bestimmen, Beispiel 4 | A.11.06
Der Wertebereich oder die Wertemenge ist die Menge aller möglichen y-Werte, die eine Funktion annehmen kann. Man kann die Wertemenge bestimmen, wenn man das Schaubild der Funktion hat. Asymptoten, Hoch- und Tiefpunkte geben nun meistens an, welches die höchsten und tiefsten Punkte der Funktion sind.
Wertebereich einer Funktion bestimmen, Beispiel 1 | A.11.06
Der Wertebereich oder die Wertemenge ist die Menge aller möglichen y-Werte, die eine Funktion annehmen kann. Man kann die Wertemenge bestimmen, wenn man das Schaubild der Funktion hat. Asymptoten, Hoch- und Tiefpunkte geben nun meistens an, welches die höchsten und tiefsten Punkte der Funktion sind.
Wertebereich einer Funktion bestimmen, Beispiel 5 | A.11.06
Der Wertebereich oder die Wertemenge ist die Menge aller möglichen y-Werte, die eine Funktion annehmen kann. Man kann die Wertemenge bestimmen, wenn man das Schaubild der Funktion hat. Asymptoten, Hoch- und Tiefpunkte geben nun meistens an, welches die höchsten und tiefsten Punkte der Funktion sind.