Matrizen transponieren - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

Transponierte Matrix: so kann man eine Matrix transponieren, Beispiel 3 | M.03.02
Matrizen zu transponieren ist das einfachste der Welt. Man betrachtet die Hauptdiagonale der Matrix und muss anschließend an dieser alle Elemente der Matrix spiegeln. Schon hat man die transponierte Matrix.
Transponierte Matrix: so kann man eine Matrix transponieren, Beispiel 2 | M.03.02
Matrizen zu transponieren ist das einfachste der Welt. Man betrachtet die Hauptdiagonale der Matrix und muss anschließend an dieser alle Elemente der Matrix spiegeln. Schon hat man die transponierte Matrix.
Transponierte Matrix: so kann man eine Matrix transponieren | M.03.02
Matrizen zu transponieren ist das einfachste der Welt. Man betrachtet die Hauptdiagonale der Matrix und muss anschließend an dieser alle Elemente der Matrix spiegeln. Schon hat man die transponierte Matrix.
Transponierte Matrix: so kann man eine Matrix transponieren, Beispiel 1 | M.03.02
Matrizen zu transponieren ist das einfachste der Welt. Man betrachtet die Hauptdiagonale der Matrix und muss anschließend an dieser alle Elemente der Matrix spiegeln. Schon hat man die transponierte Matrix.
Matrizen und Lineares Gleichungssystem: welche Rechenoperationen es gibt | M.03
Mit Matrizen kann man die verschiedensten Rechnungen anstellen. Die häufigsten Rechenoperationen sind die Matrizenmultiplikation, das Invertieren von Matrizen (Inverse berechnen), das Transponieren von Matrizen und Lösen von Matrizengleichungen. Diese vier Operationen erläutern wir in den folgenden Kapiteln.