Matrizen - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

Matrizen - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

Determinante berechnen bei 2x2-Matrizen, Beispiel 2 | M.04.01
Determinante bei 2x2-Matrizen: Sehr einfach. Man berechnet sie wie folgt: (linker oberer Eintrag) mal (rechter unterer Eintrag) minus (linker unterer Eintrag) mal (rechter oberer Eintrag).
Determinante berechnen bei 2x2-Matrizen | M.04.01
Determinante bei 2x2-Matrizen: Sehr einfach. Man berechnet sie wie folgt: (linker oberer Eintrag) mal (rechter unterer Eintrag) minus (linker unterer Eintrag) mal (rechter oberer Eintrag).
Determinante berechnen bei 2x2-Matrizen, Beispiel 3 | M.04.01
Determinante bei 2x2-Matrizen: Sehr einfach. Man berechnet sie wie folgt: (linker oberer Eintrag) mal (rechter unterer Eintrag) minus (linker unterer Eintrag) mal (rechter oberer Eintrag).
Determinante berechnen bei 2x2-Matrizen, Beispiel 1 | M.04.01
Determinante bei 2x2-Matrizen: Sehr einfach. Man berechnet sie wie folgt: (linker oberer Eintrag) mal (rechter unterer Eintrag) minus (linker unterer Eintrag) mal (rechter oberer Eintrag).
Matrizen und Lineares Gleichungssystem: welche Rechenoperationen es gibt | M.03
Mit Matrizen kann man die verschiedensten Rechnungen anstellen. Die häufigsten Rechenoperationen sind die Matrizenmultiplikation, das Invertieren von Matrizen (Inverse berechnen), das Transponieren von Matrizen und Lösen von Matrizengleichungen. Diese vier Operationen erläutern wir in den folgenden Kapiteln.
Transponierte Matrix: so kann man eine Matrix transponieren, Beispiel 3 | M.03.02
Matrizen zu transponieren ist das einfachste der Welt. Man betrachtet die Hauptdiagonale der Matrix und muss anschließend an dieser alle Elemente der Matrix spiegeln. Schon hat man die transponierte Matrix.
Matrizen und LGS
Die gängige Abkürzung für „Lineares GleichungsSystem“ ist „LGS“. Läßt man in einem LGS die Buchstaben der Unbekannten weg und schreibt nur die Zahlen auf, nennt man das Ganze „Matrix“ (bzw. mehrere „Matrizen“). Eine Einführung
Transponierte Matrix: so kann man eine Matrix transponieren, Beispiel 2 | M.03.02
Matrizen zu transponieren ist das einfachste der Welt. Man betrachtet die Hauptdiagonale der Matrix und muss anschließend an dieser alle Elemente der Matrix spiegeln. Schon hat man die transponierte Matrix.
Transponierte Matrix: so kann man eine Matrix transponieren | M.03.02
Matrizen zu transponieren ist das einfachste der Welt. Man betrachtet die Hauptdiagonale der Matrix und muss anschließend an dieser alle Elemente der Matrix spiegeln. Schon hat man die transponierte Matrix.
Transponierte Matrix: so kann man eine Matrix transponieren, Beispiel 1 | M.03.02
Matrizen zu transponieren ist das einfachste der Welt. Man betrachtet die Hauptdiagonale der Matrix und muss anschließend an dieser alle Elemente der Matrix spiegeln. Schon hat man die transponierte Matrix.