M2 - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

M2 - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

Arbeitsinsel 9: Material M2
Eine Lernspirale mit mehreren Arbeitsinseln von Dr. Bernd Klewitz.
Schnittwinkel von Geraden berechnen, Beispiel 1 | A.02.16
Es gibt nur zwei Formeln, um Winkel zu berechnen. Die eine Formel, die wir hier behandeln, sieht zwar nicht ganz einfach aus, hat den großen Vorteil, dass die Rechnungen sehr einfach werden. Die Formel lautet „tan(alpha)=(m2-m1)/(1+m1*m2)“. Hierbei sind „m1“ und „m2“ die Steigungen der beiden Geraden. Man setzt „m1“ und „m2“ in die Formel ein und erhält den ...
Schnittwinkel von Geraden berechnen, Beispiel 2 | A.02.16
Es gibt nur zwei Formeln, um Winkel zu berechnen. Die eine Formel, die wir hier behandeln, sieht zwar nicht ganz einfach aus, hat den großen Vorteil, dass die Rechnungen sehr einfach werden. Die Formel lautet „tan(alpha)=(m2-m1)/(1+m1*m2)“. Hierbei sind „m1“ und „m2“ die Steigungen der beiden Geraden. Man setzt „m1“ und „m2“ in die Formel ein und erhält den ...
Schnittwinkel von Geraden berechnen, Beispiel 2 | A.02.16
Es gibt nur zwei Formeln, um Winkel zu berechnen. Die eine Formel, die wir hier behandeln, sieht zwar nicht ganz einfach aus, hat den großen Vorteil, dass die Rechnungen sehr einfach werden. Die Formel lautet „tan(alpha)=(m2-m1)/(1+m1*m2)“. Hierbei sind „m1“ und „m2“ die Steigungen der beiden Geraden. Man setzt „m1“ und „m2“ in die Formel ein und erhält den ...
Schnittwinkel von Geraden berechnen | A.02.16
Es gibt nur zwei Formeln, um Winkel zu berechnen. Die eine Formel, die wir hier behandeln, sieht zwar nicht ganz einfach aus, hat den großen Vorteil, dass die Rechnungen sehr einfach werden. Die Formel lautet „tan(alpha)=(m2-m1)/(1+m1*m2)“. Hierbei sind „m1“ und „m2“ die Steigungen der beiden Geraden. Man setzt „m1“ und „m2“ in die Formel ein und erhält den ...
Kugel berechnen mit der Kugelgleichung, Beispiel 3 | V.06.07
Eine Kugel hat die Gleichung (x1-m1)^2+(x2-m2)^2+(x3-m3)^2=r^2, wobei „m1“, „m2“ und „m3“ die Koordinaten des Mittelpunktes sind und „r“ natürlich der Radius. [Statt x1, x2 und x3 kann man selbstverständlich auch x, y und z schreiben]. Für viele Rechnungen muss man die binomischen Formeln der Kugelgleichung auflösen.
Kreisgleichung, Beispiel 2 | V.06.01
Ein Kreis hat in der 2-dimensionalen Ebene die Gleichung (x1-m1)^2+(x2-m2)^2=r^2, wobei „m1“ und „m2“ die Koordinaten des Mittelpunktes sind und „r“ natürlich der Radius. [Statt x1 und x2 kann man selbstverständlich auch x und y schreiben]. Für viele Rechnungen muss man die binomischen Formeln der Kreisgleichung auflösen.
Kreisgleichung | V.06.01
Ein Kreis hat in der 2-dimensionalen Ebene die Gleichung (x1-m1)^2+(x2-m2)^2=r^2, wobei „m1“ und „m2“ die Koordinaten des Mittelpunktes sind und „r“ natürlich der Radius. [Statt x1 und x2 kann man selbstverständlich auch x und y schreiben]. Für viele Rechnungen muss man die binomischen Formeln der Kreisgleichung auflösen.
Kugel berechnen mit der Kugelgleichung | V.06.07
Eine Kugel hat die Gleichung (x1-m1)^2+(x2-m2)^2+(x3-m3)^2=r^2, wobei „m1“, „m2“ und „m3“ die Koordinaten des Mittelpunktes sind und „r“ natürlich der Radius. [Statt x1, x2 und x3 kann man selbstverständlich auch x, y und z schreiben]. Für viele Rechnungen muss man die binomischen Formeln der Kugelgleichung auflösen.
Kreisgleichung, Beispiel 1 | V.06.01
Ein Kreis hat in der 2-dimensionalen Ebene die Gleichung (x1-m1)^2+(x2-m2)^2=r^2, wobei „m1“ und „m2“ die Koordinaten des Mittelpunktes sind und „r“ natürlich der Radius. [Statt x1 und x2 kann man selbstverständlich auch x und y schreiben]. Für viele Rechnungen muss man die binomischen Formeln der Kreisgleichung auflösen.