M2 - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen
Schnittwinkel von Geraden berechnen, Beispiel 1 | A.02.16
Es gibt nur zwei Formeln, um Winkel zu berechnen. Die eine Formel, die wir hier behandeln, sieht zwar nicht ganz einfach aus, hat den großen Vorteil, dass die Rechnungen sehr einfach werden. Die Formel lautet tan(alpha)=(m2-m1)/(1+m1*m2). Hierbei sind m1 und m2 die Steigungen der beiden Geraden. Man setzt m1 und m2 in die Formel ein und erhält den ...
Schnittwinkel von Geraden berechnen, Beispiel 2 | A.02.16
Es gibt nur zwei Formeln, um Winkel zu berechnen. Die eine Formel, die wir hier behandeln, sieht zwar nicht ganz einfach aus, hat den großen Vorteil, dass die Rechnungen sehr einfach werden. Die Formel lautet tan(alpha)=(m2-m1)/(1+m1*m2). Hierbei sind m1 und m2 die Steigungen der beiden Geraden. Man setzt m1 und m2 in die Formel ein und erhält den ...
Schnittwinkel von Geraden berechnen, Beispiel 2 | A.02.16
Es gibt nur zwei Formeln, um Winkel zu berechnen. Die eine Formel, die wir hier behandeln, sieht zwar nicht ganz einfach aus, hat den großen Vorteil, dass die Rechnungen sehr einfach werden. Die Formel lautet tan(alpha)=(m2-m1)/(1+m1*m2). Hierbei sind m1 und m2 die Steigungen der beiden Geraden. Man setzt m1 und m2 in die Formel ein und erhält den ...
Schnittwinkel von Geraden berechnen | A.02.16
Es gibt nur zwei Formeln, um Winkel zu berechnen. Die eine Formel, die wir hier behandeln, sieht zwar nicht ganz einfach aus, hat den großen Vorteil, dass die Rechnungen sehr einfach werden. Die Formel lautet tan(alpha)=(m2-m1)/(1+m1*m2). Hierbei sind m1 und m2 die Steigungen der beiden Geraden. Man setzt m1 und m2 in die Formel ein und erhält den ...
Kugel berechnen mit der Kugelgleichung, Beispiel 3 | V.06.07
Eine Kugel hat die Gleichung (x1-m1)^2+(x2-m2)^2+(x3-m3)^2=r^2, wobei m1, m2 und m3 die Koordinaten des Mittelpunktes sind und r natürlich der Radius. [Statt x1, x2 und x3 kann man selbstverständlich auch x, y und z schreiben]. Für viele Rechnungen muss man die binomischen Formeln der Kugelgleichung auflösen.
Kreisgleichung, Beispiel 2 | V.06.01
Ein Kreis hat in der 2-dimensionalen Ebene die Gleichung (x1-m1)^2+(x2-m2)^2=r^2, wobei m1 und m2 die Koordinaten des Mittelpunktes sind und r natürlich der Radius. [Statt x1 und x2 kann man selbstverständlich auch x und y schreiben]. Für viele Rechnungen muss man die binomischen Formeln der Kreisgleichung auflösen.
Kreisgleichung | V.06.01
Ein Kreis hat in der 2-dimensionalen Ebene die Gleichung (x1-m1)^2+(x2-m2)^2=r^2, wobei m1 und m2 die Koordinaten des Mittelpunktes sind und r natürlich der Radius. [Statt x1 und x2 kann man selbstverständlich auch x und y schreiben]. Für viele Rechnungen muss man die binomischen Formeln der Kreisgleichung auflösen.
Kugel berechnen mit der Kugelgleichung | V.06.07
Eine Kugel hat die Gleichung (x1-m1)^2+(x2-m2)^2+(x3-m3)^2=r^2, wobei m1, m2 und m3 die Koordinaten des Mittelpunktes sind und r natürlich der Radius. [Statt x1, x2 und x3 kann man selbstverständlich auch x, y und z schreiben]. Für viele Rechnungen muss man die binomischen Formeln der Kugelgleichung auflösen.
Kreisgleichung, Beispiel 1 | V.06.01
Ein Kreis hat in der 2-dimensionalen Ebene die Gleichung (x1-m1)^2+(x2-m2)^2=r^2, wobei m1 und m2 die Koordinaten des Mittelpunktes sind und r natürlich der Radius. [Statt x1 und x2 kann man selbstverständlich auch x und y schreiben]. Für viele Rechnungen muss man die binomischen Formeln der Kreisgleichung auflösen.
Quelle
Systematik
- Mathematisch-Naturwissenschaftliche Fächer (22)
- Mathematik (21)
- Sozialkundlich-Philosophische Fächer (3)
- Sprachen und Literatur (3)
- Geschichte (2)
- Deutsch (2)
- Landschaft (1)
Schlagwörter
- Formel (Mathematik) (12)
- E-Learning (12)
- Video (12)
- Schnittwinkel (11)
- Steigung (11)
- Winkel (11)
- Geometrie (11)