Lotfußpunkt - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

Punkt an Gerade spiegeln, Beispiel 3 | V.04.03
Will man Punkt an Gerade spiegeln, braucht man den Lotfußpunkt. (Um den Lotfußpunkt zu berechnen, gibt es wiederum viele Möglichkeiten.) Nun spiegelt man den Punkt am Lotfußpunkt und erhält den gewünschten Spiegelpunkt.
Punkt an Gerade spiegeln, Beispiel 2 | V.04.03
Will man Punkt an Gerade spiegeln, braucht man den Lotfußpunkt. (Um den Lotfußpunkt zu berechnen, gibt es wiederum viele Möglichkeiten.) Nun spiegelt man den Punkt am Lotfußpunkt und erhält den gewünschten Spiegelpunkt.
Punkt an Gerade spiegeln, Beispiel 1 | V.04.03
Will man Punkt an Gerade spiegeln, braucht man den Lotfußpunkt. (Um den Lotfußpunkt zu berechnen, gibt es wiederum viele Möglichkeiten.) Nun spiegelt man den Punkt am Lotfußpunkt und erhält den gewünschten Spiegelpunkt.
Punkt an Gerade spiegeln | V.04.03
Will man Punkt an Gerade spiegeln, braucht man den Lotfußpunkt. (Um den Lotfußpunkt zu berechnen, gibt es wiederum viele Möglichkeiten.) Nun spiegelt man den Punkt am Lotfußpunkt und erhält den gewünschten Spiegelpunkt.
Punkt an Ebene spiegeln, Beispiel 1 | V.04.04
Will man Punkt an Ebene spiegeln, braucht man den Lotfußpunkt. (Man stellt dafür eine Lotgerade auf und schneidet diese mit der Ebene.) Nun spiegelt man den Punkt am Lotfußpunkt und erhält den gewünschten Spiegelpunkt.
Punkt an Ebene spiegeln, Beispiel 2 | V.04.04
Will man Punkt an Ebene spiegeln, braucht man den Lotfußpunkt. (Man stellt dafür eine Lotgerade auf und schneidet diese mit der Ebene.) Nun spiegelt man den Punkt am Lotfußpunkt und erhält den gewünschten Spiegelpunkt.
Punkt an Ebene spiegeln | V.04.04
Will man Punkt an Ebene spiegeln, braucht man den Lotfußpunkt. (Man stellt dafür eine Lotgerade auf und schneidet diese mit der Ebene.) Nun spiegelt man den Punkt am Lotfußpunkt und erhält den gewünschten Spiegelpunkt.
Punkt an Ebene spiegeln, Beispiel 3 | V.04.04
Will man Punkt an Ebene spiegeln, braucht man den Lotfußpunkt. (Man stellt dafür eine Lotgerade auf und schneidet diese mit der Ebene.) Nun spiegelt man den Punkt am Lotfußpunkt und erhält den gewünschten Spiegelpunkt.
Abstand Punkt Gerade berechnen über laufenden Punkt, Beispiel 1 | V.03.03
Den Abstand Punkt-Gerade kann man auf mehrere Arten berechnen. Eine der Möglichkeiten ist der Weg über den laufenden Punkt (oder auch fliegenden Punkt wie es heißt). Man schreibt die Gerade dafür in Punktform um, stellt einen Verbindungsvektor von diesem laufenden Punkt zum Ausgangspunkt auf. Das Skalarprodukt von diesem Verbindungsvektor (mitsamt Parameter) mit dem ...
Abstand Punkt Gerade berechnen über laufenden Punkt, Beispiel 2 | V.03.03
Den Abstand Punkt-Gerade kann man auf mehrere Arten berechnen. Eine der Möglichkeiten ist der Weg über den laufenden Punkt (oder auch fliegenden Punkt wie es heißt). Man schreibt die Gerade dafür in Punktform um, stellt einen Verbindungsvektor von diesem laufenden Punkt zum Ausgangspunkt auf. Das Skalarprodukt von diesem Verbindungsvektor (mitsamt Parameter) mit dem ...