Logarithmusfunktion - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

Logarithmusfunktion - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

Differentialrechnung Exponential- und Logarithmusfunktion
Übungsaufgaben und Beispiellösungen zu Ableitungen von Exponentialfunktion (e^x) Logarithmusfunktion (ln x) allgemeiner Exponentialfunktion (a^x) Logarithmusfunktion (log a (x))   
Logarithmusfunktion: Definitionsmenge bestimmen, Beispiel 1 | A.44.01
Bei jeder Logarithmusfunktion ist die Definitionsmenge wichtig. Die Definitionsmenge bestimmt man, in dem man das Argument (die Klammer) größer Null setzt und nach x auflöst.
Logarithmusfunktion: Definitionsmenge bestimmen | A.44.01
Bei jeder Logarithmusfunktion ist die Definitionsmenge wichtig. Die Definitionsmenge bestimmt man, in dem man das Argument (die Klammer) größer Null setzt und nach x auflöst.
Logarithmusfunktion: Definitionsmenge bestimmen, Beispiel 3 | A.44.01
Bei jeder Logarithmusfunktion ist die Definitionsmenge wichtig. Die Definitionsmenge bestimmt man, in dem man das Argument (die Klammer) größer Null setzt und nach x auflöst.
Logarithmusfunktion: Definitionsmenge bestimmen, Beispiel 2 | A.44.01
Bei jeder Logarithmusfunktion ist die Definitionsmenge wichtig. Die Definitionsmenge bestimmt man, in dem man das Argument (die Klammer) größer Null setzt und nach x auflöst.
Logarithmusfunktion: kurze Einführung | A.44
Logarithmusfunktionen erkennt man typischerweise am Logarithmus. Das ist eine gute Erkenntnis. Typisch an der Skizze einer Logarithmusfunktion ist die senkrechte Asymptote, wobei die Funktion jedoch entweder nur links oder nur rechts der Asymptote existiert.
Logarithmusfunktion: Stammfunktion bestimmen, Beispiel 1 | A.44.04
Die Stammfunktion vom ln ist nicht ganz einfach zu errechnen. Wahrscheinlich müssen Sie dieses aber auch nie errechnen, sondern dürfen aus der Formelsammlung verwenden, dass für die Stammfunktion des Logarithmus gilt: f(x)=ln(x) == F(x)=x*ln(x)-x.
Aus dem Schaubild einer Logarithmusfunktion die Funktionsgleichung erstellen, Beispiel 1 | A.44.08
Im Normalfall muss man nur Funktionen der Form f(x)=a·ln(bx+c) zeichnen. Das Argument setzt man Null, wobei man für „x“ den Wert der Definitionslücke einsetzt. Nun nimmt man ein paar Punkte, setzt sie in die Funktion ein und bestimmt die Parameter a, b und c.
Logarithmusfunktion ableiten, Beispiel 3 | A.44.02
Die Ableitung einer ln-Funktion erhält man, in dem man das Argument des Logarithmus in den Nenner setzt. (Also 1 durch Argument). Hinter den Bruch muss natürlich noch die innere Ableitung gesetzt werden, man wendet demnach die Kettenregel an.
Logarithmusfunktion: Stammfunktion bestimmen | A.44.04
Die Stammfunktion vom ln ist nicht ganz einfach zu errechnen. Wahrscheinlich müssen Sie dieses aber auch nie errechnen, sondern dürfen aus der Formelsammlung verwenden, dass für die Stammfunktion des Logarithmus gilt: f(x)=ln(x) == F(x)=x*ln(x)-x.