Linearfaktoren - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen
Mit Linearfaktoren quadratische Gleichungen lösen, Beispiel 1 | G.04.01
Wenn man Glück hat, ist die quadratische Gleichung als Linearfaktorform gegeben (Abkürzung LF oder LFF). Eine Linearfaktorform liegt vor, wenn man (normalerweise) zwei Klammern hat, die mit Mal verbunden sind, in jeder Klammer nur x steht (ohne Quadrat) und außerhalb der Klammern kein Plus oder Minus auftaucht. Die einzelnen Klammern heißen ...
Mit Linearfaktoren quadratische Gleichungen lösen, Beispiel 2 | G.04.01
Wenn man Glück hat, ist die quadratische Gleichung als Linearfaktorform gegeben (Abkürzung LF oder LFF). Eine Linearfaktorform liegt vor, wenn man (normalerweise) zwei Klammern hat, die mit Mal verbunden sind, in jeder Klammer nur x steht (ohne Quadrat) und außerhalb der Klammern kein Plus oder Minus auftaucht. Die einzelnen Klammern heißen ...
Mit Linearfaktoren quadratische Gleichungen lösen | G.04.01
Wenn man Glück hat, ist die quadratische Gleichung als Linearfaktorform gegeben (Abkürzung LF oder LFF). Eine Linearfaktorform liegt vor, wenn man (normalerweise) zwei Klammern hat, die mit Mal verbunden sind, in jeder Klammer nur x steht (ohne Quadrat) und außerhalb der Klammern kein Plus oder Minus auftaucht. Die einzelnen Klammern heißen ...
Mit Linearfaktoren quadratische Gleichungen lösen, Beispiel 3 | G.04.01
Wenn man Glück hat, ist die quadratische Gleichung als Linearfaktorform gegeben (Abkürzung LF oder LFF). Eine Linearfaktorform liegt vor, wenn man (normalerweise) zwei Klammern hat, die mit Mal verbunden sind, in jeder Klammer nur x steht (ohne Quadrat) und außerhalb der Klammern kein Plus oder Minus auftaucht. Die einzelnen Klammern heißen ...
Ganzrationale Funktionen: kurze Einführung | A.46
Den Hauptteil von ganzrationalen Funktionen (=Parabeln) haben wir ersten Themenbereich behandelt Analysis 1. In diesem Hauptkapitel behandeln wir nur ein paar Besonderheiten davon. Wir stellen Polynome über diverse Bedingungen auf, zerlegen sie in Linearfaktoren, bestimmen Nullstellen über Polynomdivision oder Horner-Schema.
Aus dem Schaubild einer ganzrationalen Funktion die Funktionsgleichung erstellen, Beispiel 1
Kann man aus dem Schaubild so viele Nullstellen ablesen, wie der Grad der Funktion ist, stellt man die Funktion einfach über die Linearfaktoren auf (siehe Kap.3.6.3). Kann man weniger Nullstellen ablesen, als der Grad ist, muss man, um die Funktionsgleichung zu erhalten, Hoch-, Tief-, Wendepunkte oder einfache, normale Punkte der Funktion ablesen und die Funktion über ...
Quelle
Systematik
Schlagwörter
- E-Learning (18)
- Analysis (18)
- Video (18)
- Linearfaktoren (12)
- Linearfaktorform (12)
- Parabel (Mathematik) (12)
- Ganzrationale Funktion (10)