Lineare Substitution - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen
Mit Integration durch Substitution eine verkettete Funktion integrieren, Beispiel 3 | A.14.06
Braucht man die Stammfunktion einer verschachtelten Funktionen und das Innere der Klammer ist nicht linear (also nicht m*x+b), kann man die lineare Substitution nicht mehr anwenden. Man braucht die normale (etwas schwerere) Substitutionsregel. Vorgehensweise: man sucht eine Klammer, die innere Ableitung (oder Vielfache davon) dieser Klammer muss irgendwo in der Funktion ...
Mit Integration durch Substitution eine verkettete Funktion integrieren, Beispiel 2 | A.14.06
Braucht man die Stammfunktion einer verschachtelten Funktionen und das Innere der Klammer ist nicht linear (also nicht m*x+b), kann man die lineare Substitution nicht mehr anwenden. Man braucht die normale (etwas schwerere) Substitutionsregel. Vorgehensweise: man sucht eine Klammer, die innere Ableitung (oder Vielfache davon) dieser Klammer muss irgendwo in der Funktion ...
Mit Integration durch Substitution eine verkettete Funktion integrieren, Beispiel 4 | A.14.06
Braucht man die Stammfunktion einer verschachtelten Funktionen und das Innere der Klammer ist nicht linear (also nicht m*x+b), kann man die lineare Substitution nicht mehr anwenden. Man braucht die normale (etwas schwerere) Substitutionsregel. Vorgehensweise: man sucht eine Klammer, die innere Ableitung (oder Vielfache davon) dieser Klammer muss irgendwo in der Funktion ...
Mit Integration durch Substitution eine verkettete Funktion integrieren, Beispiel 6 | A.14.06
Braucht man die Stammfunktion einer verschachtelten Funktionen und das Innere der Klammer ist nicht linear (also nicht m*x+b), kann man die lineare Substitution nicht mehr anwenden. Man braucht die normale (etwas schwerere) Substitutionsregel. Vorgehensweise: man sucht eine Klammer, die innere Ableitung (oder Vielfache davon) dieser Klammer muss irgendwo in der Funktion ...
Mit Integration durch Substitution eine verkettete Funktion integrieren, Beispiel 5 | A.14.06
Braucht man die Stammfunktion einer verschachtelten Funktionen und das Innere der Klammer ist nicht linear (also nicht m*x+b), kann man die lineare Substitution nicht mehr anwenden. Man braucht die normale (etwas schwerere) Substitutionsregel. Vorgehensweise: man sucht eine Klammer, die innere Ableitung (oder Vielfache davon) dieser Klammer muss irgendwo in der Funktion ...
Mit Integration durch Substitution eine verkettete Funktion integrieren, Beispiel 1 | A.14.06
Braucht man die Stammfunktion einer verschachtelten Funktionen und das Innere der Klammer ist nicht linear (also nicht m*x+b), kann man die lineare Substitution nicht mehr anwenden. Man braucht die normale (etwas schwerere) Substitutionsregel. Vorgehensweise: man sucht eine Klammer, die innere Ableitung (oder Vielfache davon) dieser Klammer muss irgendwo in der Funktion ...
Mit Integration durch Substitution eine verkettete Funktion integrieren | A.14.06
Braucht man die Stammfunktion einer verschachtelten Funktionen und das Innere der Klammer ist nicht linear (also nicht m*x+b), kann man die lineare Substitution nicht mehr anwenden. Man braucht die normale (etwas schwerere) Substitutionsregel. Vorgehensweise: man sucht eine Klammer, die innere Ableitung (oder Vielfache davon) dieser Klammer muss irgendwo in der Funktion ...
Video: Lösen einer trigonometrischen Gleichung mittels Substitution
In diesem Video von chemnitz-tutor.de wird ausführlich eine trigonometrische Gleichung gelöst, die durch Substitution auf eine Quadratische Gleichung führt. Diese Technik muss bei vielen trigonometrischen Gleichungen angewandt werden.
Quelle
Systematik
- Mathematik (27)
- Mathematisch-Naturwissenschaftliche Fächer (27)
- Zuordnungen, Funktionen (2)
- Unbestimmtes Integral (1)
- Integralrechnung (1)
- Lineare Funktionen (1)
- Nullstellen (1)
Schlagwörter
- Video (25)
- Funktion (Mathematik) (24)
- Analysis (24)
- E-Learning (24)
- Ableitung (20)
- Stammfunktion (20)
- Lineare Substitution (13)