Laplace Bedingung - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen
Moivre-Laplace Näherungsformel, Beispiel 2 | W.18.03
Gelegentlich muss man die Binomialverteilung durch die Gaußverteilung annähern. (Vor allem wenn die Zahlen so groß sind, dass jeder Taschenrechner aussteigt [das geht relativ schnell]). Das ist erlaubt wenn die sogenannte Laplace Bedingung erfüllt ist, also wenn die Standardabweichung größer als 3 ist. Ist das der Fall, kann die Annäherung durchgeführt werden, d.h. ...
Moivre-Laplace Näherungsformel | W.18.03
Gelegentlich muss man die Binomialverteilung durch die Gaußverteilung annähern. (Vor allem wenn die Zahlen so groß sind, dass jeder Taschenrechner aussteigt [das geht relativ schnell]). Das ist erlaubt wenn die sogenannte Laplace Bedingung erfüllt ist, also wenn die Standardabweichung größer als 3 ist. Ist das der Fall, kann die Annäherung durchgeführt werden, d.h. ...
Moivre-Laplace Näherungsformel, Beispiel 1 | W.18.03
Gelegentlich muss man die Binomialverteilung durch die Gaußverteilung annähern. (Vor allem wenn die Zahlen so groß sind, dass jeder Taschenrechner aussteigt [das geht relativ schnell]). Das ist erlaubt wenn die sogenannte Laplace Bedingung erfüllt ist, also wenn die Standardabweichung größer als 3 ist. Ist das der Fall, kann die Annäherung durchgeführt werden, d.h. ...
Moivre-Laplace Näherungsformel, Beispiel 3 | W.18.03
Gelegentlich muss man die Binomialverteilung durch die Gaußverteilung annähern. (Vor allem wenn die Zahlen so groß sind, dass jeder Taschenrechner aussteigt [das geht relativ schnell]). Das ist erlaubt wenn die sogenannte Laplace Bedingung erfüllt ist, also wenn die Standardabweichung größer als 3 ist. Ist das der Fall, kann die Annäherung durchgeführt werden, d.h. ...
Binomialverteilung LaPlace Bedingung | W.16.04
Die Binomialverteilung berechnet man mit einem GTR oder einem CAS mit einem einfachen Befehl: binompdf(n,p,k). Hierbei ist n die Gesamtanzahl aller Züge, k ist die Anzahl der gewünschten Treffer, p ist die W.S. eines einzelnen Treffers. Will man die Summe aller Treffer von 0 bis k haben, kann man den Befehl binomcdf(n,p,k) verwendet.