Lüften - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen
Affine Abbildung; Eigenvektor, Beispiel 4 | M.09.02
Lineare Abbildungen von Matrizen der Form y=M*x+v wandeln einen Vektor x in einen anderen Vektor y um. M ist eine Matrix, v ist ein Verschiebungsvektor. Insgesamt kann durch die Abbildung y=M*x+v so ziemlich jede Drehung, Verschiebung, Streckung, etc.. beschrieben werden. In diesem Kapitel lüften wir das spannende Geheimnis, wie man M und v ...
Affine Abbildung; Eigenvektor, Beispiel 3 | M.09.02
Lineare Abbildungen von Matrizen der Form y=M*x+v wandeln einen Vektor x in einen anderen Vektor y um. M ist eine Matrix, v ist ein Verschiebungsvektor. Insgesamt kann durch die Abbildung y=M*x+v so ziemlich jede Drehung, Verschiebung, Streckung, etc.. beschrieben werden. In diesem Kapitel lüften wir das spannende Geheimnis, wie man M und v ...
Affine Abbildung; Eigenvektor, Beispiel 2 | M.09.02
Lineare Abbildungen von Matrizen der Form y=M*x+v wandeln einen Vektor x in einen anderen Vektor y um. M ist eine Matrix, v ist ein Verschiebungsvektor. Insgesamt kann durch die Abbildung y=M*x+v so ziemlich jede Drehung, Verschiebung, Streckung, etc.. beschrieben werden. In diesem Kapitel lüften wir das spannende Geheimnis, wie man M und v ...
Affine Abbildung; Eigenvektor | M.09.02
Lineare Abbildungen von Matrizen der Form y=M*x+v wandeln einen Vektor x in einen anderen Vektor y um. M ist eine Matrix, v ist ein Verschiebungsvektor. Insgesamt kann durch die Abbildung y=M*x+v so ziemlich jede Drehung, Verschiebung, Streckung, etc.. beschrieben werden. In diesem Kapitel lüften wir das spannende Geheimnis, wie man M und v ...
Affine Abbildung; Eigenvektor, Beispiel 6 | M.09.02
Lineare Abbildungen von Matrizen der Form y=M*x+v wandeln einen Vektor x in einen anderen Vektor y um. M ist eine Matrix, v ist ein Verschiebungsvektor. Insgesamt kann durch die Abbildung y=M*x+v so ziemlich jede Drehung, Verschiebung, Streckung, etc.. beschrieben werden. In diesem Kapitel lüften wir das spannende Geheimnis, wie man M und v ...
Affine Abbildung; Eigenvektor, Beispiel 1 | M.09.02
Lineare Abbildungen von Matrizen der Form y=M*x+v wandeln einen Vektor x in einen anderen Vektor y um. M ist eine Matrix, v ist ein Verschiebungsvektor. Insgesamt kann durch die Abbildung y=M*x+v so ziemlich jede Drehung, Verschiebung, Streckung, etc.. beschrieben werden. In diesem Kapitel lüften wir das spannende Geheimnis, wie man M und v ...
Affine Abbildung; Eigenvektor, Beispiel 5 | M.09.02
Lineare Abbildungen von Matrizen der Form y=M*x+v wandeln einen Vektor x in einen anderen Vektor y um. M ist eine Matrix, v ist ein Verschiebungsvektor. Insgesamt kann durch die Abbildung y=M*x+v so ziemlich jede Drehung, Verschiebung, Streckung, etc.. beschrieben werden. In diesem Kapitel lüften wir das spannende Geheimnis, wie man M und v ...
Exponentielles Wachstum berechnen, Beispiel 2 | A.30.03
Exponentielles Wachstum ist ein Wachstum, in welchem die Zunahme (oder Abnahme) immer proportional zum Bestand ist, sprich: zum bereits vorhandenen Bestand kommt immer der gleiche prozentuale Anteil dazu (oder geht weg). Standardbeispiel: Zinsen bei der Bank (Zu einem angelegten Kapital kommt immer der gleiche Zinssatz dazu). Typisch für exponentielles Wachstum ist die ...
Das Geheimnis des Bumerangs
Ein Bumerang fliegt von selbst wieder zurück jedenfalls, wenn er richtig geworfen wird. Aber was heißt das genau? Wir müssen den Bumerang so werfen, dass er in eine schnelle und stabile Drehbewegung kommt: Diese lässt ihn zu uns zurückkehren. Also reine Übungssache - zumindest, was die Wurftechnik angeht. Aber wie muss ein Bumerang beschaffen sein, damit das ...
Exponentielle Funktionen im CO-Zerfall
Mithilfe dieser vier interaktiven Übungen im Mathematikunterricht der Sekundarstufe II arbeiten die Schülerinnen und Schüler mit Exponentialfunktionen und untersuchen deren Steigung und Ableitung im Anwendungskontext der Entwicklung der CO-Konzentration beim Lüften eines Raumes. Die interaktiven Übungen stehen als Link und als Download zur ...
Quelle
Systematik
- Mathematisch-Naturwissenschaftliche Fächer (12)
- Mathematik (9)
- Grundschule (3)
- Fachunabhängige Bildungsthemen (2)
- Allgemeine Biologie (2)
- Biologie (2)
- Kinematik, Dynamik (1)
Schlagwörter
- Affine Transformation (7)
- Affine Abbildung (7)
- Affine Abbildungen (7)
- Nachhaltiges Handeln (1)
- Richtiges Lüften (1)
- Co2-Belastung (1)
- Atmungssystem (1)