Kubische Parabel - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen
Kubische Funktion, kubische Parabel ableiten, Beispiel 3 | A.05.02
Die Ableitung von (kubischen) Funktionen braucht man hauptsächlich um Extrempunkte und Tangenten zu berechnen. Setzt man die Ableitung Null und löst nach x auf, erhält man die Hoch- und Tiefpunkte. Setzt man irgendeinen x-Wert in die Ableitung ein, so erhält man die Tangentensteigung. Wie leitet man überhaupt ab? Die Hochzahl von x kommt vor, die neue Hochzahl ...
Kubische Funktion, kubische Parabel ableiten, Beispiel 2 | A.05.02
Die Ableitung von (kubischen) Funktionen braucht man hauptsächlich um Extrempunkte und Tangenten zu berechnen. Setzt man die Ableitung Null und löst nach x auf, erhält man die Hoch- und Tiefpunkte. Setzt man irgendeinen x-Wert in die Ableitung ein, so erhält man die Tangentensteigung. Wie leitet man überhaupt ab? Die Hochzahl von x kommt vor, die neue Hochzahl ...
Kubische Funktion, kubische Parabel ableiten | A.05.02
Die Ableitung von (kubischen) Funktionen braucht man hauptsächlich um Extrempunkte und Tangenten zu berechnen. Setzt man die Ableitung Null und löst nach x auf, erhält man die Hoch- und Tiefpunkte. Setzt man irgendeinen x-Wert in die Ableitung ein, so erhält man die Tangentensteigung. Wie leitet man überhaupt ab? Die Hochzahl von x kommt vor, die neue Hochzahl ...
Kubische Funktion, Funktionsanalyse / Kurvendiskussion, Beispiel 2b: Hoch-/ Tiefpunkt berechnen
Wir betrachten eine kubische Funktion und machen davon eine Funktionsuntersuchung (=Kurvendiskussion). Wir berechnen die Nullstellen, Hoch-, Tief- und Wendepunkte, machen eine Skizze der Funktion und lassen dadurch die kosmische Energie des Universums eine Entspannung unseres Seelenzustands bewirken.
Kubische Funktion, Funktionsanalyse / Kurvendiskussion, Beispiel 2e: Schnittpunkt berechnen
Wir betrachten eine kubische Funktion und machen davon eine Funktionsuntersuchung (=Kurvendiskussion). Wir berechnen die Nullstellen, Hoch-, Tief- und Wendepunkte, machen eine Skizze der Funktion und lassen dadurch die kosmische Energie des Universums eine Entspannung unseres Seelenzustands bewirken.
Kubische Funktion, Funktionsanalyse / Kurvendiskussion, Beispiel 2d: Tangente berechnen
Wir betrachten eine kubische Funktion und machen davon eine Funktionsuntersuchung (=Kurvendiskussion). Wir berechnen die Nullstellen, Hoch-, Tief- und Wendepunkte, machen eine Skizze der Funktion und lassen dadurch die kosmische Energie des Universums eine Entspannung unseres Seelenzustands bewirken.
Kubische Funktion, Funktionsanalyse / Kurvendiskussion, Beispiel 2a: wir zeichnen die Funktion
Wir betrachten eine kubische Funktion und machen davon eine Funktionsuntersuchung (=Kurvendiskussion). Wir berechnen die Nullstellen, Hoch-, Tief- und Wendepunkte, machen eine Skizze der Funktion und lassen dadurch die kosmische Energie des Universums eine Entspannung unseres Seelenzustands bewirken.
Kubische Funktion, Funktionsanalyse / Kurvendiskussion, Beispiel 2 | A.05.07
Wir betrachten eine kubische Funktion und machen davon eine Funktionsuntersuchung (=Kurvendiskussion). Wir berechnen die Nullstellen, Hoch-, Tief- und Wendepunkte, machen eine Skizze der Funktion und lassen dadurch die kosmische Energie des Universums eine Entspannung unseres Seelenzustands bewirken.
Kubische Funktion, Funktionsanalyse / Kurvendiskussion, Beispiel 2c: Wendepunkte berechnen
Wir betrachten eine kubische Funktion und machen davon eine Funktionsuntersuchung (=Kurvendiskussion). Wir berechnen die Nullstellen, Hoch-, Tief- und Wendepunkte, machen eine Skizze der Funktion und lassen dadurch die kosmische Energie des Universums eine Entspannung unseres Seelenzustands bewirken.
Kubische Funktion, Tangenten kubischer Parabeln berechnen, Beispiel 2 | A.05.05
Eine Tangente ist eine Gerade, die eine Funktion in einem bestimmten Punkt berührt. Die Steigung der Tangente erhält man, in dem man den x-Wert des Berührpunktes in die Ableitung der Funktion einsetzt. Den y-Wert des Berührpunktes erhält man, in dem man x in die Ausgangsfunktion f(x) einsetzt. Setzt man x, y und m in die Geradengleichung y=m*x+b ein, erhält man b und ...
Quelle
Systematik
Schlagwörter
- Koordinaten (32)
- Analysis (32)
- E-Learning (32)
- Video (32)
- Funktion (Mathematik) (30)
- Ableitung (29)
- Kubische Funktion (28)