Kubische Parabel - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

Kubische Parabel - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

Kubische Funktion, kubische Parabel ableiten, Beispiel 3 | A.05.02
Die Ableitung von (kubischen) Funktionen braucht man hauptsächlich um Extrempunkte und Tangenten zu berechnen. Setzt man die Ableitung Null und löst nach „x“ auf, erhält man die Hoch- und Tiefpunkte. Setzt man irgendeinen x-Wert in die Ableitung ein, so erhält man die Tangentensteigung. Wie leitet man überhaupt ab? Die Hochzahl von „x“ kommt vor, die neue Hochzahl ...
Kubische Funktion, kubische Parabel ableiten, Beispiel 2 | A.05.02
Die Ableitung von (kubischen) Funktionen braucht man hauptsächlich um Extrempunkte und Tangenten zu berechnen. Setzt man die Ableitung Null und löst nach „x“ auf, erhält man die Hoch- und Tiefpunkte. Setzt man irgendeinen x-Wert in die Ableitung ein, so erhält man die Tangentensteigung. Wie leitet man überhaupt ab? Die Hochzahl von „x“ kommt vor, die neue Hochzahl ...
Kubische Funktion, kubische Parabel ableiten | A.05.02
Die Ableitung von (kubischen) Funktionen braucht man hauptsächlich um Extrempunkte und Tangenten zu berechnen. Setzt man die Ableitung Null und löst nach „x“ auf, erhält man die Hoch- und Tiefpunkte. Setzt man irgendeinen x-Wert in die Ableitung ein, so erhält man die Tangentensteigung. Wie leitet man überhaupt ab? Die Hochzahl von „x“ kommt vor, die neue Hochzahl ...
Kubische Funktion, Funktionsanalyse / Kurvendiskussion, Beispiel 2b: Hoch-/ Tiefpunkt berechnen
Wir betrachten eine kubische Funktion und machen davon eine Funktionsuntersuchung (=Kurvendiskussion). Wir berechnen die Nullstellen, Hoch-, Tief- und Wendepunkte, machen eine Skizze der Funktion und lassen dadurch die kosmische Energie des Universums eine Entspannung unseres Seelenzustands bewirken.
Kubische Funktion, Funktionsanalyse / Kurvendiskussion, Beispiel 2e: Schnittpunkt berechnen
Wir betrachten eine kubische Funktion und machen davon eine Funktionsuntersuchung (=Kurvendiskussion). Wir berechnen die Nullstellen, Hoch-, Tief- und Wendepunkte, machen eine Skizze der Funktion und lassen dadurch die kosmische Energie des Universums eine Entspannung unseres Seelenzustands bewirken.
Kubische Funktion, Funktionsanalyse / Kurvendiskussion, Beispiel 2d: Tangente berechnen
Wir betrachten eine kubische Funktion und machen davon eine Funktionsuntersuchung (=Kurvendiskussion). Wir berechnen die Nullstellen, Hoch-, Tief- und Wendepunkte, machen eine Skizze der Funktion und lassen dadurch die kosmische Energie des Universums eine Entspannung unseres Seelenzustands bewirken.
Kubische Funktion, Funktionsanalyse / Kurvendiskussion, Beispiel 2a: wir zeichnen die Funktion
Wir betrachten eine kubische Funktion und machen davon eine Funktionsuntersuchung (=Kurvendiskussion). Wir berechnen die Nullstellen, Hoch-, Tief- und Wendepunkte, machen eine Skizze der Funktion und lassen dadurch die kosmische Energie des Universums eine Entspannung unseres Seelenzustands bewirken.
Kubische Funktion, Funktionsanalyse / Kurvendiskussion, Beispiel 2 | A.05.07
Wir betrachten eine kubische Funktion und machen davon eine Funktionsuntersuchung (=Kurvendiskussion). Wir berechnen die Nullstellen, Hoch-, Tief- und Wendepunkte, machen eine Skizze der Funktion und lassen dadurch die kosmische Energie des Universums eine Entspannung unseres Seelenzustands bewirken.
Kubische Funktion, Funktionsanalyse / Kurvendiskussion, Beispiel 2c: Wendepunkte berechnen
Wir betrachten eine kubische Funktion und machen davon eine Funktionsuntersuchung (=Kurvendiskussion). Wir berechnen die Nullstellen, Hoch-, Tief- und Wendepunkte, machen eine Skizze der Funktion und lassen dadurch die kosmische Energie des Universums eine Entspannung unseres Seelenzustands bewirken.
Kubische Funktion, Tangenten kubischer Parabeln berechnen, Beispiel 2 | A.05.05
Eine Tangente ist eine Gerade, die eine Funktion in einem bestimmten Punkt berührt. Die Steigung der Tangente erhält man, in dem man den x-Wert des Berührpunktes in die Ableitung der Funktion einsetzt. Den y-Wert des Berührpunktes erhält man, in dem man x in die Ausgangsfunktion f(x) einsetzt. Setzt man x, y und m in die Geradengleichung y=m*x+b ein, erhält man b und ...