Kosinus - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

Kosinus - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

Veranschaulichung von Sinus und Kosinus am Einheitskreis
Auf dieser Seite des Landesbildungsservers Baden-Württemberg wird mithilfe einer Animation in den Sinus und Cosinus am Einheitskreis eingeführt.
Trigonometrische Funktionen: Ableitung, Beispiel 3 | A.42.04
Trigonometrische Funktionen leitet man vom Prinzip sehr einfach ab. Sinus abgeleitet wird Kosinus, Kosinus abgeleitet ergibt den negativen Sinus. Kurz: sin'=cos, cos'=-sin. (Falls man Tangens differenzieren muss [=ableiten], schreibt man ihn um zu: tan=sin/cos und leitet diesen Bruch ab.)
Sinus, Kosinus und Tangens (Mathematik)
Die Winkelfunktionen Sinus, Kosinus und Tangens sind die wichtigsten trigonometrischen Funktionen. Dieser Artikel erklärt an Beispielen, wie man diese Funktionen berechnen kann, was Gegenkathete, Hypotenuse und Ankathete sind und welche Rechenregeln es gibt.
Trigonometrische Funktionen: Ableitung, Beispiel 1 | A.42.04
Trigonometrische Funktionen leitet man vom Prinzip sehr einfach ab. Sinus abgeleitet wird Kosinus, Kosinus abgeleitet ergibt den negativen Sinus. Kurz: sin'=cos, cos'=-sin. (Falls man Tangens differenzieren muss [=ableiten], schreibt man ihn um zu: tan=sin/cos und leitet diesen Bruch ab.)
Trigonometrische Funktionen: Ableitung | A.42.04
Trigonometrische Funktionen leitet man vom Prinzip sehr einfach ab. Sinus abgeleitet wird Kosinus, Kosinus abgeleitet ergibt den negativen Sinus. Kurz: sin'=cos, cos'=-sin. (Falls man Tangens differenzieren muss [=ableiten], schreibt man ihn um zu: tan=sin/cos und leitet diesen Bruch ab.)
Trigonometrische Funktionen: Ableitung, Beispiel 2 | A.42.04
Trigonometrische Funktionen leitet man vom Prinzip sehr einfach ab. Sinus abgeleitet wird Kosinus, Kosinus abgeleitet ergibt den negativen Sinus. Kurz: sin'=cos, cos'=-sin. (Falls man Tangens differenzieren muss [=ableiten], schreibt man ihn um zu: tan=sin/cos und leitet diesen Bruch ab.)
Sinus, Kosinus und Tangens
Eine Einführung der Sinus-, Kosinus-,Tangensfunktion mithilfe eines Java-Applets (Klasse 9 und 10).; Lernressourcentyp: Unterrichtsplanung; Lernmaterial; Arbeitsblatt (interaktiv); Mindestalter: 10; Höchstalter: 14
Schaubilder von Funktionen: Sinus-Funktion / Kosinus-Funktion | A.27.01
Für viele Aufgaben mit Schaubilder ist es unerlässlich, das Aussehen der Standardfunktionen zu kennen. Es ist wichtig, die Schaubilder der folgenden Funktionstypen zu kennen: 1.die Parabeln von ganzrationalen Funktionen, 2.von Exponentialfunktionen, 3.von trigonometrische Funktionen (Sinus und Kosinus), 4.Hyperbeln von Bruch-Funktionen, 5.von Wurzelfunktionen, 6.von ...
Trigonometrische Funktionen: kurze Einführung | A.42
Trigonometrische Funktionen sind periodisch, wiederholen sich also in regelmäßigen Abständen. Der Abstand, bis es zur nächsten Wiederholung kommt, nennt sich Periode. Die wichtigsten periodischen Funktionen der Trigonometrie sind die Sinus, die Kosinus und die Tangens-Funktion (abgekürzt; sin(x), cos(x), tan(x)). Unwichtige periodische Funktionen sind Kotangens, Sekans ...
So leitet man vermischte Funktionen ab | A.13.07
In den bisherigen Kapiteln haben wir hauptsächlich Polynome („normale“ Funktionen) abgeleitet. Meistens müssen Sie jedoch Funktionen ableiten, in denen Sinus, Kosinus, e-Funktionen, Wurzeln, ln, etc.. vermischt werden. Das üben wir an dieser Stelle.