Koordinatenebenen - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

Dreiseitige Pyramide aus Ebene mit Koordinatenebenen, Beispiel 2 | V.07.01
Eine Ebene bildet mit den Koordinatenebenen normalerweise eine dreiseitige Pyramide, in welcher drei rechte Winkel auftauchen. Wählt man Grundseite, Höhe, Grundlinie, etc.. geschickt, kann man das Volumen fast im Kopf rechnen.
Dreiseitige Pyramide aus Ebene mit Koordinatenebenen | V.07.01
Eine Ebene bildet mit den Koordinatenebenen normalerweise eine dreiseitige Pyramide, in welcher drei rechte Winkel auftauchen. Wählt man Grundseite, Höhe, Grundlinie, etc.. geschickt, kann man das Volumen fast im Kopf rechnen.
Dreiseitige Pyramide aus Ebene mit Koordinatenebenen, Beispiel 3 | V.07.01
Eine Ebene bildet mit den Koordinatenebenen normalerweise eine dreiseitige Pyramide, in welcher drei rechte Winkel auftauchen. Wählt man Grundseite, Höhe, Grundlinie, etc.. geschickt, kann man das Volumen fast im Kopf rechnen.
Dreiseitige Pyramide aus Ebene mit Koordinatenebenen, Beispiel 1 | V.07.01
Eine Ebene bildet mit den Koordinatenebenen normalerweise eine dreiseitige Pyramide, in welcher drei rechte Winkel auftauchen. Wählt man Grundseite, Höhe, Grundlinie, etc.. geschickt, kann man das Volumen fast im Kopf rechnen.
Spurpunkte einer Geraden berechnen, Beispiel 4 | V.01.09
Spurpunkte von Geraden sind Schnittpunkte von Geraden mit Koordinatenebenen. Die x1-x2-Ebene hat die Gleichung x3=0, da setzt man die x3-Koordinate der Geraden Null und kriegt so den ersten Spurpunkt. Ebenso verfährt man mit der x1-x3-Ebene und der x2-x3-Ebene.
Spurpunkte einer Geraden berechnen, Beispiel 3 | V.01.09
Spurpunkte von Geraden sind Schnittpunkte von Geraden mit Koordinatenebenen. Die x1-x2-Ebene hat die Gleichung x3=0, da setzt man die x3-Koordinate der Geraden Null und kriegt so den ersten Spurpunkt. Ebenso verfährt man mit der x1-x3-Ebene und der x2-x3-Ebene.
Spurpunkte einer Geraden berechnen | V.01.09
Spurpunkte von Geraden sind Schnittpunkte von Geraden mit Koordinatenebenen. Die x1-x2-Ebene hat die Gleichung x3=0, da setzt man die x3-Koordinate der Geraden Null und kriegt so den ersten Spurpunkt. Ebenso verfährt man mit der x1-x3-Ebene und der x2-x3-Ebene.
Spurpunkte einer Geraden berechnen, Beispiel 2 | V.01.09
Spurpunkte von Geraden sind Schnittpunkte von Geraden mit Koordinatenebenen. Die x1-x2-Ebene hat die Gleichung x3=0, da setzt man die x3-Koordinate der Geraden Null und kriegt so den ersten Spurpunkt. Ebenso verfährt man mit der x1-x3-Ebene und der x2-x3-Ebene.
Spurpunkte einer Geraden berechnen, Beispiel 1 | V.01.09
Spurpunkte von Geraden sind Schnittpunkte von Geraden mit Koordinatenebenen. Die x1-x2-Ebene hat die Gleichung x3=0, da setzt man die x3-Koordinate der Geraden Null und kriegt so den ersten Spurpunkt. Ebenso verfährt man mit der x1-x3-Ebene und der x2-x3-Ebene.
Senkrechte Projektion auf Koordinatenebene oder auf Koordinatenachse | V.09.03
Senkrechte Projektionen sind sehr einfach. Je nachdem auf was projiziert wird (auf Koordinatenebenen oder auf Koordinatenachsen) werden einzelne Koordinaten Null.