Koordinatenebene - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

Senkrechte Spiegelung an Koordinatenachse oder Koordinatenebene | V.04.01
Eine „senkrechte Spiegelung“ bedeutet: „Spiegelung an Koordinatenachse“ oder „Spiegelung an Koordinatenebene“. Beides geht sehr einfach: man ändert einfach die Vorzeichen von denjenigen Koordinaten die NICHT im Namen stehen (z.B. bei Spiegelung an der x1-Achse ändert man die Vorzeichen der x2- und der x3-Koordinate).
Senkrechte Spiegelung an Koordinatenachse oder Koordinatenebene, Beispiel 2 | V.04.01
Eine „senkrechte Spiegelung“ bedeutet: „Spiegelung an Koordinatenachse“ oder „Spiegelung an Koordinatenebene“. Beides geht sehr einfach: man ändert einfach die Vorzeichen von denjenigen Koordinaten die NICHT im Namen stehen (z.B. bei Spiegelung an der x1-Achse ändert man die Vorzeichen der x2- und der x3-Koordinate).
Senkrechte Spiegelung an Koordinatenachse oder Koordinatenebene, Beispiel 3 | V.04.01
Eine „senkrechte Spiegelung“ bedeutet: „Spiegelung an Koordinatenachse“ oder „Spiegelung an Koordinatenebene“. Beides geht sehr einfach: man ändert einfach die Vorzeichen von denjenigen Koordinaten die NICHT im Namen stehen (z.B. bei Spiegelung an der x1-Achse ändert man die Vorzeichen der x2- und der x3-Koordinate).
Senkrechte Spiegelung an Koordinatenachse oder Koordinatenebene, Beispiel 1 | V.04.01
Eine „senkrechte Spiegelung“ bedeutet: „Spiegelung an Koordinatenachse“ oder „Spiegelung an Koordinatenebene“. Beides geht sehr einfach: man ändert einfach die Vorzeichen von denjenigen Koordinaten die NICHT im Namen stehen (z.B. bei Spiegelung an der x1-Achse ändert man die Vorzeichen der x2- und der x3-Koordinate).
Senkrechte Projektion auf Koordinatenebene oder auf Koordinatenachse | V.09.03
Senkrechte Projektionen sind sehr einfach. Je nachdem auf was projiziert wird (auf Koordinatenebenen oder auf Koordinatenachsen) werden einzelne Koordinaten Null.
Dreiseitige Pyramide aus Ebene mit Koordinatenebenen, Beispiel 2 | V.07.01
Eine Ebene bildet mit den Koordinatenebenen normalerweise eine dreiseitige Pyramide, in welcher drei rechte Winkel auftauchen. Wählt man Grundseite, Höhe, Grundlinie, etc.. geschickt, kann man das Volumen fast im Kopf rechnen.
Senkrechte Projektion auf Koordinatenebene oder auf Koordinatenachse, Beispiel 1 | V.09.03
Senkrechte Projektionen sind sehr einfach. Je nachdem auf was projiziert wird (auf Koordinatenebenen oder auf Koordinatenachsen) werden einzelne Koordinaten Null.
Senkrechte Projektion auf Koordinatenebene oder auf Koordinatenachse, Beispiel 2 | V.09.03
Senkrechte Projektionen sind sehr einfach. Je nachdem auf was projiziert wird (auf Koordinatenebenen oder auf Koordinatenachsen) werden einzelne Koordinaten Null.
Dreiseitige Pyramide aus Ebene mit Koordinatenebenen | V.07.01
Eine Ebene bildet mit den Koordinatenebenen normalerweise eine dreiseitige Pyramide, in welcher drei rechte Winkel auftauchen. Wählt man Grundseite, Höhe, Grundlinie, etc.. geschickt, kann man das Volumen fast im Kopf rechnen.
Dreiseitige Pyramide aus Ebene mit Koordinatenebenen, Beispiel 3 | V.07.01
Eine Ebene bildet mit den Koordinatenebenen normalerweise eine dreiseitige Pyramide, in welcher drei rechte Winkel auftauchen. Wählt man Grundseite, Höhe, Grundlinie, etc.. geschickt, kann man das Volumen fast im Kopf rechnen.