Koordinatenachsen - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

Koordinatenachsen - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen

Spurpunkte einer Ebene berechnen, Beispiel 4 | V.01.10
Spurpunkte von Ebenen sind Schnittpunkte mit den Koordinatenachsen. Den Schnittpunkt mit der x1-Achse berechnet man, indem man in die Koordinatengleichung der Ebene x2=0 und x3=0 einsetzt und nach x1 auflöst. Ebenso berechnet man die Achsenschnittpunkte mit der x2- und der x3-Achse.
Spurpunkte einer Ebene berechnen, Beispiel 2 | V.01.10
Spurpunkte von Ebenen sind Schnittpunkte mit den Koordinatenachsen. Den Schnittpunkt mit der x1-Achse berechnet man, indem man in die Koordinatengleichung der Ebene x2=0 und x3=0 einsetzt und nach x1 auflöst. Ebenso berechnet man die Achsenschnittpunkte mit der x2- und der x3-Achse.
Spurpunkte einer Ebene berechnen, Beispiel 3 | V.01.10
Spurpunkte von Ebenen sind Schnittpunkte mit den Koordinatenachsen. Den Schnittpunkt mit der x1-Achse berechnet man, indem man in die Koordinatengleichung der Ebene x2=0 und x3=0 einsetzt und nach x1 auflöst. Ebenso berechnet man die Achsenschnittpunkte mit der x2- und der x3-Achse.
Spurpunkte einer Ebene berechnen | V.01.10
Spurpunkte von Ebenen sind Schnittpunkte mit den Koordinatenachsen. Den Schnittpunkt mit der x1-Achse berechnet man, indem man in die Koordinatengleichung der Ebene x2=0 und x3=0 einsetzt und nach x1 auflöst. Ebenso berechnet man die Achsenschnittpunkte mit der x2- und der x3-Achse.
Spurpunkte einer Ebene berechnen, Beispiel 1 | V.01.10
Spurpunkte von Ebenen sind Schnittpunkte mit den Koordinatenachsen. Den Schnittpunkt mit der x1-Achse berechnet man, indem man in die Koordinatengleichung der Ebene x2=0 und x3=0 einsetzt und nach x1 auflöst. Ebenso berechnet man die Achsenschnittpunkte mit der x2- und der x3-Achse.
Senkrechte Projektion auf Koordinatenebene oder auf Koordinatenachse | V.09.03
Senkrechte Projektionen sind sehr einfach. Je nachdem auf was projiziert wird (auf Koordinatenebenen oder auf Koordinatenachsen) werden einzelne Koordinaten Null.
Kurvendiskussion
Mit über 150 Artikeln und über 100 interaktiven Übungen gehört MatheGuru.com zu den umfangreichsten Mathematikseiten im deutschsprachigen Internet. Zahlreiche farbige Abbildungen visualisieren die einzelnen Sachverhalte und helfen beim Verständnis. Hier finden Sie eine Zusammenfassung zum Thema Kurvendiskussion.
Senkrechte Projektion auf Koordinatenebene oder auf Koordinatenachse, Beispiel 1 | V.09.03
Senkrechte Projektionen sind sehr einfach. Je nachdem auf was projiziert wird (auf Koordinatenebenen oder auf Koordinatenachsen) werden einzelne Koordinaten Null.
Senkrechte Projektion auf Koordinatenebene oder auf Koordinatenachse, Beispiel 2 | V.09.03
Senkrechte Projektionen sind sehr einfach. Je nachdem auf was projiziert wird (auf Koordinatenebenen oder auf Koordinatenachsen) werden einzelne Koordinaten Null.
Dreiecksfläche berechnen, Beispiel 2 | A.18.08
Sind Flächen von Geraden umschlossen, kann man diese Flächen oft als Dreiecksflächen angehen. Diese Dreiecksflächen kann man über A=1/2*g*h bestimmen (KANN man, MUSS man nicht!). Das Integral einer Geraden mit den Koordinatenachsen ist z.B. oft gefragt, das ist ein rechtwinkliges Dreieck.