Klammern auflösen - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen
Bruchgleichungen: so bestimmt man die Lösungsmenge | G.06.03
Um eine Bruchgleichung zu lösen, bestimmt man zuerst Hauptnenner und Definitionsmenge. Danach multipliziert man die gesamte Gleichung mit dem Hauptnenner. Da sich nun alle Nenner wegkürzen, bleibt eine ganz normale Gleichung übrig (ohne Nenner, ohne Brüche). Alle Klammern auflösen, zusammenfassen, zum Schluss vermutlich noch a-b-c-Formel bzw. p-q-Formel ...
Polynome über Nullstellen aufstellen, Beispiel 1 | A.46.04
Kennt man die Nullstellen einer Funktion (z.B. x1, x2, x3, ), kann man die Linearfaktorzerlegung der Funktion aufstellen. Also f(x)=a·(x-x1)·(x-x2)·(x-x3)·... Den Parameter a erhält man über die Punktprobe mit einem beliebigen Punkt. Nun hat man die Funktionsgleichung. Falls man möchte, kann man auch noch alle Klammern auflösen.
Bruchgleichungen: so bestimmt man die Lösungsmenge, Beispiel 1 | G.06.03
Um eine Bruchgleichung zu lösen, bestimmt man zuerst Hauptnenner und Definitionsmenge. Danach multipliziert man die gesamte Gleichung mit dem Hauptnenner. Da sich nun alle Nenner wegkürzen, bleibt eine ganz normale Gleichung übrig (ohne Nenner, ohne Brüche). Alle Klammern auflösen, zusammenfassen, zum Schluss vermutlich noch a-b-c-Formel bzw. p-q-Formel ...
Polynome über Nullstellen aufstellen | A.46.04
Kennt man die Nullstellen einer Funktion (z.B. x1, x2, x3, ), kann man die Linearfaktorzerlegung der Funktion aufstellen. Also f(x)=a·(x-x1)·(x-x2)·(x-x3)·... Den Parameter a erhält man über die Punktprobe mit einem beliebigen Punkt. Nun hat man die Funktionsgleichung. Falls man möchte, kann man auch noch alle Klammern auflösen.
Bruchgleichungen: so bestimmt man die Lösungsmenge, Beispiel 2 | G.06.03
Um eine Bruchgleichung zu lösen, bestimmt man zuerst Hauptnenner und Definitionsmenge. Danach multipliziert man die gesamte Gleichung mit dem Hauptnenner. Da sich nun alle Nenner wegkürzen, bleibt eine ganz normale Gleichung übrig (ohne Nenner, ohne Brüche). Alle Klammern auflösen, zusammenfassen, zum Schluss vermutlich noch a-b-c-Formel bzw. p-q-Formel ...
Polynome über Nullstellen aufstellen, Beispiel 2 | A.46.04
Kennt man die Nullstellen einer Funktion (z.B. x1, x2, x3, ), kann man die Linearfaktorzerlegung der Funktion aufstellen. Also f(x)=a·(x-x1)·(x-x2)·(x-x3)·... Den Parameter a erhält man über die Punktprobe mit einem beliebigen Punkt. Nun hat man die Funktionsgleichung. Falls man möchte, kann man auch noch alle Klammern auflösen.