Inhomogene Differentialgleichung - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen
Inhomogene Differentialgleichung über partikuläre Lösung lösen, Beispiel 4 | A.53.05
Bei einer inhomogenen DGL höherer Ordnung macht man zwei Schritte (beide sind lang). Im ersten Schritt löst man die zugehörige homogene DGL. Die zugehörige Lösung ist der erste Teil der Gesamtlösung. Im zweiten Schritt versucht man die spezielle Lösung oder partikuläre Lösung zu finden. Diese ist meistens vom gleichen Typ, wie die Störfunktion. (Die ...
Lineare, inhomogene Differentialgleichung DGL lösen | A.53.03
Eine lineare inhomogene DGL hat die Form a·y'+b·y=c (a, b, c sind nicht zwingend Zahlen, sondern hängen von x ab). Im ersten Schritt bestimmt man die Lösung der zugehörigen homogenen DGL (man setzt also c=0) (?Kap.4.3.2). Im zweiten Schritt ersetzt man die Integrationskonstante c durch eine Funktion c(x). Nun setzt man die gesamte Lösung (mitsamt c(x)) ...
Lineare, inhomogene Differentialgleichung DGL lösen, Beispiel 3 | A.53.03
Eine lineare inhomogene DGL hat die Form a·y'+b·y=c (a, b, c sind nicht zwingend Zahlen, sondern hängen von x ab). Im ersten Schritt bestimmt man die Lösung der zugehörigen homogenen DGL (man setzt also c=0) (?Kap.4.3.2). Im zweiten Schritt ersetzt man die Integrationskonstante c durch eine Funktion c(x). Nun setzt man die gesamte Lösung (mitsamt c(x)) ...
Inhomogene Differentialgleichung über partikuläre Lösung lösen, Beispiel 2 | A.53.05
Bei einer inhomogenen DGL höherer Ordnung macht man zwei Schritte (beide sind lang). Im ersten Schritt löst man die zugehörige homogene DGL. Die zugehörige Lösung ist der erste Teil der Gesamtlösung. Im zweiten Schritt versucht man die spezielle Lösung oder partikuläre Lösung zu finden. Diese ist meistens vom gleichen Typ, wie die Störfunktion. (Die ...
Lineare, inhomogene Differentialgleichung DGL lösen, Beispiel 2 | A.53.03
Eine lineare inhomogene DGL hat die Form a·y'+b·y=c (a, b, c sind nicht zwingend Zahlen, sondern hängen von x ab). Im ersten Schritt bestimmt man die Lösung der zugehörigen homogenen DGL (man setzt also c=0) (?Kap.4.3.2). Im zweiten Schritt ersetzt man die Integrationskonstante c durch eine Funktion c(x). Nun setzt man die gesamte Lösung (mitsamt c(x)) ...
Inhomogene Differentialgleichung über partikuläre Lösung lösen, Beispiel 5 | A.53.05
Bei einer inhomogenen DGL höherer Ordnung macht man zwei Schritte (beide sind lang). Im ersten Schritt löst man die zugehörige homogene DGL. Die zugehörige Lösung ist der erste Teil der Gesamtlösung. Im zweiten Schritt versucht man die spezielle Lösung oder partikuläre Lösung zu finden. Diese ist meistens vom gleichen Typ, wie die Störfunktion. (Die ...
Inhomogene Differentialgleichung über partikuläre Lösung lösen, Beispiel 1 | A.53.05
Bei einer inhomogenen DGL höherer Ordnung macht man zwei Schritte (beide sind lang). Im ersten Schritt löst man die zugehörige homogene DGL. Die zugehörige Lösung ist der erste Teil der Gesamtlösung. Im zweiten Schritt versucht man die spezielle Lösung oder partikuläre Lösung zu finden. Diese ist meistens vom gleichen Typ, wie die Störfunktion. (Die ...
Lineare, inhomogene Differentialgleichung DGL lösen, Beispiel 1 | A.53.03
Eine lineare inhomogene DGL hat die Form a·y'+b·y=c (a, b, c sind nicht zwingend Zahlen, sondern hängen von x ab). Im ersten Schritt bestimmt man die Lösung der zugehörigen homogenen DGL (man setzt also c=0) (?Kap.4.3.2). Im zweiten Schritt ersetzt man die Integrationskonstante c durch eine Funktion c(x). Nun setzt man die gesamte Lösung (mitsamt c(x)) ...
Inhomogene Differentialgleichung über partikuläre Lösung lösen | A.53.05
Bei einer inhomogenen DGL höherer Ordnung macht man zwei Schritte (beide sind lang). Im ersten Schritt löst man die zugehörige homogene DGL. Die zugehörige Lösung ist der erste Teil der Gesamtlösung. Im zweiten Schritt versucht man die spezielle Lösung oder partikuläre Lösung zu finden. Diese ist meistens vom gleichen Typ, wie die Störfunktion. (Die ...
Inhomogene Differentialgleichung über partikuläre Lösung lösen, Beispiel 3 | A.53.05
Bei einer inhomogenen DGL höherer Ordnung macht man zwei Schritte (beide sind lang). Im ersten Schritt löst man die zugehörige homogene DGL. Die zugehörige Lösung ist der erste Teil der Gesamtlösung. Im zweiten Schritt versucht man die spezielle Lösung oder partikuläre Lösung zu finden. Diese ist meistens vom gleichen Typ, wie die Störfunktion. (Die ...
Quelle
Systematik
Schlagwörter
- Differenzialgleichung (10)
- Differentialgleichung (10)
- Parameter (10)
- Variable (10)
- Ableitung (10)
- Höhere Mathematik (10)
- Gleichung (Mathematik) (10)